Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4HelixMixedStepper.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // class G4HelixMixedStepper
27 //
28 // Class description:
29 //
30 // G4HelixMixedStepper split the Method used for Integration in two:
31 //
32 // If Stepping Angle ( h / R_curve) < pi/3
33 // use Stepper for small step(ClassicalRK4 by default)
34 // Else use HelixExplicitEuler Stepper
35 //
36 // History:
37 // Derived from ExactHelicalStepper 18/05/07
38 //
39 // -------------------------------------------------------------------------
40 
41 #include "G4HelixMixedStepper.hh"
42 #include "G4PhysicalConstants.hh"
43 #include "G4ClassicalRK4.hh"
44 #include "G4CashKarpRKF45.hh"
45 #include "G4SimpleRunge.hh"
46 #include "G4HelixImplicitEuler.hh"
47 #include "G4HelixExplicitEuler.hh"
48 #include "G4HelixSimpleRunge.hh"
49 #include "G4ExactHelixStepper.hh"
50 #include "G4ExplicitEuler.hh"
51 #include "G4ImplicitEuler.hh"
52 #include "G4SimpleHeum.hh"
53 #include "G4RKG3_Stepper.hh"
54 #include "G4NystromRK4.hh"
55 // Additional potential stepper
56 #include "G4DormandPrince745.hh"
57 #include "G4BogackiShampine23.hh"
58 #include "G4BogackiShampine45.hh"
59 #include "G4TsitourasRK45.hh"
60 
61 #include "G4ThreeVector.hh"
62 #include "G4LineSection.hh"
63 
65 G4HelixMixedStepper(G4Mag_EqRhs *EqRhs, G4int stepperNumber,
66  G4double angleThreshold)
67  : G4MagHelicalStepper(EqRhs), fNumCallsRK4(0), fNumCallsHelix(0)
68 {
69  SetVerbose(1);
70  if( angleThreshold < 0.0 ){
71  fAngle_threshold= 0.33*pi;
72  }else{
73  fAngle_threshold= angleThreshold;
74  }
75 
76  if(stepperNumber<0)
77  stepperNumber=4; // Default is RK4 (original)
78  // stepperNumber=745; // Default is DormandPrince745 (ie DoPri5)
79  // stepperNumber=8; // Default is CashKarp
80 
81  fStepperNumber = stepperNumber; // Store the choice
82  fRK4Stepper = SetupStepper(EqRhs, fStepperNumber);
83 }
84 
86 {
87  delete(fRK4Stepper);
88  if (fVerbose>0){ PrintCalls();};
89 }
90 
91 void G4HelixMixedStepper::Stepper( const G4double yInput[7],
92  const G4double dydx[7],
93  G4double Step,
94  G4double yOut[7],
95  G4double yErr[])
96 {
97  //Estimation of the Stepping Angle
98  G4ThreeVector Bfld;
99  MagFieldEvaluate(yInput, Bfld);
100 
101  G4double Bmag = Bfld.mag();
102  const G4double *pIn = yInput+3;
103  G4ThreeVector initVelocity= G4ThreeVector( pIn[0], pIn[1], pIn[2]);
104  G4double velocityVal = initVelocity.mag();
105  G4double R_1;
106  G4double Ang_curve;
107 
108  R_1=std::abs(GetInverseCurve(velocityVal,Bmag));
109  Ang_curve=R_1*Step;
110  SetAngCurve(Ang_curve);
111  SetCurve(std::abs(1/R_1));
112 
113  if(Ang_curve< fAngle_threshold){
114  fNumCallsRK4++;
115  fRK4Stepper->Stepper(yInput,dydx,Step,yOut,yErr);
116  }
117  else
118  {
119  fNumCallsHelix++;
120  const G4int nvar = 6 ;
121  const G4int nvarMax = 8 ;
122  G4int i;
123  G4double yTemp[nvarMax], yIn[nvarMax], yTemp2[nvarMax];
124  G4ThreeVector Bfld_midpoint;
125 
126  // Saving yInput because yInput and yOut can be aliases for same array
127  for(i=0;i<nvar;i++) yIn[i]=yInput[i];
128 
129  G4double halfS = Step * 0.5;
130  // 1. Do first half step and full step
131  AdvanceHelix(yIn, Bfld, halfS, yTemp, yTemp2); // yTemp2 for s=2*h (halfS)
132  //**********
133 
134  MagFieldEvaluate(yTemp, Bfld_midpoint) ;
135 
136  // 2. Do second half step - with revised field
137  // NOTE: Could avoid this call if 'Bfld_midpoint == Bfld'
138  // or diff 'almost' zero
139  AdvanceHelix(yTemp, Bfld_midpoint, halfS, yOut);
140  // Not requesting y at s=2*h (halfS)
141  //**********
142 
143  // 3. Estimate the integration error
144  // should be (nearly) zero if Bfield= constant
145  for(i=0;i<nvar;i++) {
146  yErr[i] = yOut[i] - yTemp2[i] ;
147  }
148  }
149 }
150 
151 void
153  G4ThreeVector Bfld,
154  G4double h,
155  G4double yOut[])
156 {
157  AdvanceHelix(yIn, Bfld, h, yOut);
158 }
159 
161 {
162  // Implementation : must check whether h/R > 2 pi !!
163  // If( h/R < pi) use G4LineSection::DistLine
164  // Else DistChord=R_helix
165  //
166  G4double distChord;
167  G4double Ang_curve=GetAngCurve();
168 
169  if(Ang_curve<=pi){
170  distChord=GetRadHelix()*(1-std::cos(0.5*Ang_curve));
171  }
172  else
173  {
174  if(Ang_curve<twopi){
175  distChord=GetRadHelix()*(1+std::cos(0.5*(twopi-Ang_curve)));
176  }
177  else{
178  distChord=2.*GetRadHelix();
179  }
180  }
181 
182  return distChord;
183 }
184 
185 // ---------------------------------------------------------------------------
187 {
188  G4cout << "In HelixMixedStepper::Number of calls to smallStepStepper = "
189  << fNumCallsRK4
190  << " and Number of calls to Helix = " << fNumCallsHelix << G4endl;
191 }
192 
195 {
196  G4MagIntegratorStepper* pStepper;
197  if (fVerbose>0) G4cout << " G4HelixMixedStepper: ";
198  switch ( StepperNumber )
199  {
200  // Robust, classic method
201  case 4:
202  pStepper = new G4ClassicalRK4( pE );
203  if (fVerbose>0) G4cout << "G4ClassicalRK4";
204  break;
205 
206  // Steppers with embedded estimation of error
207  case 8:
208  pStepper = new G4CashKarpRKF45( pE );
209  if (fVerbose>0) G4cout << "G4CashKarpRKF45";
210  break;
211  case 13:
212  pStepper = new G4NystromRK4( pE );
213  if (fVerbose>0) G4cout << "G4NystromRK4";
214  break;
215 
216  // Lowest order RK Stepper - experimental
217  case 1:
218  pStepper = new G4ImplicitEuler( pE );
219  if (fVerbose>0) G4cout << "G4ImplicitEuler";
220  break;
221 
222  // Lower order RK Steppers - ok overall, good for uneven fields
223  case 2:
224  pStepper = new G4SimpleRunge( pE );
225  if (fVerbose>0) G4cout << "G4SimpleRunge";
226  break;
227  case 3:
228  pStepper = new G4SimpleHeum( pE );
229  if (fVerbose>0) G4cout << "G4SimpleHeum";
230  break;
231  case 23:
232  pStepper = new G4BogackiShampine23( pE );
233  if (fVerbose>0) G4cout << "G4BogackiShampine23";
234  break;
235 
236  // Higher order RK Steppers
237  // for smoother fields and high accuracy requirements
238  case 45:
239  pStepper = new G4BogackiShampine45( pE );
240  if (fVerbose>0) G4cout << "G4BogackiShampine45";
241  break;
242  case 145:
243  pStepper = new G4TsitourasRK45( pE );
244  if (fVerbose>0) G4cout << "G4TsitourasRK45";
245  break;
246  case 745:
247  pStepper = new G4DormandPrince745( pE );
248  if (fVerbose>0) G4cout << "G4DormandPrince745";
249  break;
250 
251  // Helical Steppers
252  case 6:
253  pStepper = new G4HelixImplicitEuler( pE );
254  if (fVerbose>0) G4cout << "G4HelixImplicitEuler";
255  break;
256  case 7:
257  pStepper = new G4HelixSimpleRunge( pE );
258  if (fVerbose>0) G4cout << "G4HelixSimpleRunge";
259  break;
260  case 5:
261  pStepper = new G4HelixExplicitEuler( pE );
262  if (fVerbose>0) G4cout << "G4HelixExplicitEuler";
263  break; // Since Helix Explicit is used for long steps,
264  // this is useful only to measure overhead.
265  // Exact Helix - likely good only for cases of
266  // i) uniform field (potentially over small distances)
267  // ii) segmented uniform field (maybe)
268  case 9:
269  pStepper = new G4ExactHelixStepper( pE );
270  if (fVerbose>0) G4cout << "G4ExactHelixStepper";
271  break;
272  case 10:
273  pStepper = new G4RKG3_Stepper( pE );
274  if (fVerbose>0) G4cout << "G4RKG3_Stepper";
275  break;
276 
277  // Low Order Steppers - not good except for very weak fields
278  case 11:
279  pStepper = new G4ExplicitEuler( pE );
280  if (fVerbose>0) G4cout << "G4ExplicitEuler";
281  break;
282  case 12:
283  pStepper = new G4ImplicitEuler( pE );
284  if (fVerbose>0) G4cout << "G4ImplicitEuler";
285  break;
286 
287  case 0:
288  case -1:
289  default:
290  pStepper = new G4ClassicalRK4( pE );
291  if (fVerbose>0) G4cout << "G4ClassicalRK4 (Default)";
292  break;
293  }
294  if(fVerbose>0)
295  G4cout << " chosen as stepper for small steps in G4HelixMixedStepper."
296  << G4endl;
297 
298  return pStepper;
299 }
void AdvanceHelix(const G4double yIn[], G4ThreeVector Bfld, G4double h, G4double yHelix[], G4double yHelix2[]=0)
CLHEP::Hep3Vector G4ThreeVector
G4double GetRadHelix() const
virtual void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[])=0
void MagFieldEvaluate(const G4double y[], G4ThreeVector &Bfield)
G4MagIntegratorStepper * SetupStepper(G4Mag_EqRhs *EqRhs, G4int StepperName)
int G4int
Definition: G4Types.hh:78
static constexpr double twopi
Definition: G4SIunits.hh:76
G4GLOB_DLL std::ostream G4cout
G4double GetInverseCurve(const G4double Momentum, const G4double Bmag)
void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[])
void SetAngCurve(const G4double Ang)
G4HelixMixedStepper(G4Mag_EqRhs *EqRhs, G4int StepperNumber=-1, G4double Angle_threshold=-1.0)
void SetCurve(const G4double Curve)
void DumbStepper(const G4double y[], G4ThreeVector Bfld, G4double h, G4double yout[])
Definition: Step.hh:41
#define G4endl
Definition: G4ios.hh:61
void SetVerbose(G4int newvalue)
static constexpr double pi
Definition: G4SIunits.hh:75
double G4double
Definition: G4Types.hh:76
G4double GetAngCurve() const
double mag() const
G4double DistChord() const