368 a93 = 10256301.0/35409920.0 ,
369 a94 = 2307361.0/17971200.0 ,
370 a95 = -387.0/102400.0 ,
372 a97 = -7267.0/215040.0 ,
375 a101 = -837888343715.0/13176988637184.0 ,
376 a102 = 30409415.0/52955362.0 ,
377 a103 = -48321525963.0/759168069632.0 ,
378 a104 = 8530738453321.0/197654829557760.0 ,
379 a105 = 1361640523001.0/1626788720640.0 ,
380 a106 = -13143060689.0/38604458898.0 ,
381 a107 = 18700221969.0/379584034816.0 ,
382 a108 = -5831595.0/847285792.0 ,
383 a109 = -5183640.0/26477681.0 ,
385 a111 = 98719073263.0/1551965184000.0 ,
386 a112 = 1307.0/123552.0 ,
387 a113 = 4632066559387.0/70181753241600.0 ,
388 a114 = 7828594302389.0/382182512025600.0 ,
389 a115 = 40763687.0/11070259200.0 ,
390 a116 = 34872732407.0/224610586200.0 ,
391 a117 = -2561897.0/30105600.0 ,
394 a1110 = -1403317093.0/11371610250.0 ;
405 for(
int i=0; i<numberOfVariables; i++){
406 yTemp[i] = yIn[i] + Step*(a91*dydx[i] + a92*
ak2[i] + a93*ak3[i] +
407 a94*ak4[i] + a95*ak5[i] + a96*ak6[i] +
408 a97*ak7[i] + a98*ak8[i] );
413 for(
int i=0; i<numberOfVariables; i++){
414 yTemp[i] = yIn[i] + Step*(a101*dydx[i] + a102*
ak2[i] + a103*ak3[i] +
415 a104*ak4[i] + a105*ak5[i] + a106*ak6[i] +
416 a107*ak7[i] + a108*ak8[i] + a109*ak9[i] );
421 for(
int i=0; i<numberOfVariables; i++){
422 yTemp[i] = yIn[i] + Step*(a111*dydx[i] + a112*
ak2[i] + a113*ak3[i] +
423 a114*ak4[i] + a115*ak5[i] + a116*ak6[i] +
424 a117*ak7[i] + a118*ak8[i] + a119*ak9[i] +
430 int nwant = numberOfVariables;
436 for (
int l = 0; l < nwant; l++) {
438 p[5][l] = bi[5][6]*ak5[l] +
439 ((bi[10][6]*ak10[l] + bi[8][6]*ak8[l]) +
440 (bi[7][6]*ak7[l] + bi[6][6]*ak6[l])) +
441 ((bi[4][6]*ak4[l] + bi[9][6]*ak9[l]) +
442 (bi[3][6]*ak3[l] + bi[11][6]*ak11[l]) +
445 p[4][l] = (bi[10][5]*ak10[l] + bi[9][5]*ak9[l]) +
446 ((bi[7][5]*ak7[l] + bi[6][5]*ak6[l]) +
447 bi[5][5]*ak5[l]) + ((bi[4][5]*ak4[l] +
448 bi[8][5]*ak8[l]) + (bi[3][5]*ak3[l] +
449 bi[11][5]*ak11[l]) + bi[1][5]*dydx[l]);
451 p[3][l] = ((bi[4][4]*ak4[l] + bi[8][4]*ak8[l]) +
452 (bi[7][4]*ak7[l] + bi[6][4]*ak6[l]) +
453 bi[5][4]*ak5[l]) + ((bi[10][4]*ak10[l] +
454 bi[9][4]*ak9[l]) + (bi[3][4]*ak3[l] +
455 bi[11][4]*ak11[l]) + bi[1][4]*dydx[l]);
457 p[2][l] = bi[5][3]*ak5[l] + bi[6][3]*ak6[l] +
458 ((bi[3][3]*ak3[l] + bi[9][3]*ak9[l]) +
459 (bi[10][3]*ak10[l]+ bi[8][3]*ak8[l]) + bi[1][3]*dydx[l]) +
460 ((bi[4][3]*ak4[l] + bi[11][3]*ak11[l]) + bi[7][3]*ak7[l]);
462 p[1][l] = bi[5][2]*ak5[l] + ((bi[6][2]*ak6[l] +
463 bi[8][2]*ak8[l]) + bi[1][2]*dydx[l]) +
464 ((bi[3][2]*ak3[l] + bi[9][2]*ak9[l]) +
465 bi[10][2]*ak10[l])+ ((bi[4][2]*ak4[l] +
466 bi[11][2]*
ak2[l]) + bi[7][2]*ak7[l]);
471 for (
int i = 0; i < 6; i++) {
472 for (
int l = 0; l < nwant; l++) {
477 fPreparedInterpolation=
true;
static const G4double ak2
G4int GetNumberOfVariables() const
void RightHandSide(const double y[], double dydx[])