Geant4
10.03.p03
Main Page
Related Pages
Modules
Namespaces
Classes
Files
File List
File Members
All
Classes
Namespaces
Files
Functions
Variables
Typedefs
Enumerations
Enumerator
Friends
Macros
Groups
Pages
G4HelixImplicitEuler.hh
Go to the documentation of this file.
1
//
2
// ********************************************************************
3
// * License and Disclaimer *
4
// * *
5
// * The Geant4 software is copyright of the Copyright Holders of *
6
// * the Geant4 Collaboration. It is provided under the terms and *
7
// * conditions of the Geant4 Software License, included in the file *
8
// * LICENSE and available at http://cern.ch/geant4/license . These *
9
// * include a list of copyright holders. *
10
// * *
11
// * Neither the authors of this software system, nor their employing *
12
// * institutes,nor the agencies providing financial support for this *
13
// * work make any representation or warranty, express or implied, *
14
// * regarding this software system or assume any liability for its *
15
// * use. Please see the license in the file LICENSE and URL above *
16
// * for the full disclaimer and the limitation of liability. *
17
// * *
18
// * This code implementation is the result of the scientific and *
19
// * technical work of the GEANT4 collaboration. *
20
// * By using, copying, modifying or distributing the software (or *
21
// * any work based on the software) you agree to acknowledge its *
22
// * use in resulting scientific publications, and indicate your *
23
// * acceptance of all terms of the Geant4 Software license. *
24
// ********************************************************************
25
//
26
//
27
// $Id: G4HelixImplicitEuler.hh 66356 2012-12-18 09:02:32Z gcosmo $
28
//
29
//
30
// class G4HelixImplicitEuler
31
//
32
// Class description:
33
//
34
// Helix Implicit Euler stepper for magnetic field:
35
// x_1 = x_0 + 1/2 * ( helix(h,t_0,x_0)
36
// + helix(h,t_0+h,x_0+helix(h,t0,x0) ) )
37
// Second order solver.
38
// Take the current derivative and add it to the current position.
39
// Take the output and its derivative. Add the mean of both derivatives
40
// to form the final output.
41
42
// History:
43
// - Created. W.Wander <wwc@mit.edu>, 03/11/98
44
// -------------------------------------------------------------------
45
46
#ifndef G4HELIXIMPLICITEULER_HH
47
#define G4HELIXIMPLICITEULER_HH
48
49
#include "
G4MagHelicalStepper.hh
"
50
51
class
G4HelixImplicitEuler
:
public
G4MagHelicalStepper
52
{
53
54
public
:
// with description
55
56
G4HelixImplicitEuler
(
G4Mag_EqRhs
*EqRhs)
57
:
G4MagHelicalStepper
(EqRhs) {}
58
59
~G4HelixImplicitEuler
() {}
60
61
void
DumbStepper
(
const
G4double
y[],
62
G4ThreeVector
Bfld,
63
G4double
h,
64
G4double
yout[]);
65
66
public
:
// without description
67
68
G4int
IntegratorOrder
()
const
{
return
2; }
69
};
70
71
#endif
/* G4HELIXIMPLICITEULER_HH */
CLHEP::Hep3Vector
Definition:
ThreeVector.h:41
G4HelixImplicitEuler::~G4HelixImplicitEuler
~G4HelixImplicitEuler()
Definition:
G4HelixImplicitEuler.hh:59
G4int
int G4int
Definition:
G4Types.hh:78
G4HelixImplicitEuler::G4HelixImplicitEuler
G4HelixImplicitEuler(G4Mag_EqRhs *EqRhs)
Definition:
G4HelixImplicitEuler.hh:56
G4HelixImplicitEuler
Definition:
G4HelixImplicitEuler.hh:51
G4HelixImplicitEuler::DumbStepper
void DumbStepper(const G4double y[], G4ThreeVector Bfld, G4double h, G4double yout[])
Definition:
G4HelixImplicitEuler.cc:46
G4MagHelicalStepper.hh
G4MagHelicalStepper
Definition:
G4MagHelicalStepper.hh:58
G4Mag_EqRhs
Definition:
G4Mag_EqRhs.hh:49
G4double
double G4double
Definition:
G4Types.hh:76
G4HelixImplicitEuler::IntegratorOrder
G4int IntegratorOrder() const
Definition:
G4HelixImplicitEuler.hh:68
source
geant4.10.03.p03
source
geometry
magneticfield
include
G4HelixImplicitEuler.hh
Generated on Tue Nov 28 2017 21:43:56 for Geant4 by
1.8.5