180 if(nShells > (
G4int)fProbabilities.size()) { fProbabilities.resize(nShells); }
183 for(i=0; i<nShells; ++i) {
187 fProbabilities[i] = totprob;
208 for(i=0; i<nShells; ++i) {
if(xprob <= fProbabilities[i]) {
break; } }
211 lv1.
set(0.0,0.0,energy,energy);
219 eKinEnergy = bindingEnergy*x;
220 ePotEnergy = bindingEnergy*(1.0 + x);
226 G4double sintet = sqrt((1 - costet)*(1 + costet));
227 lv2.
set(eTotMomentum*sintet*cos(phi),eTotMomentum*sintet*sin(phi),
232 gamEnergy0 = lv1.
e();
250 G4double alpha2 = alpha1 + 0.5*(1 - epsilon0sq);
255 if(nloop > nlooplim) {
return; }
260 if ( alpha1 > alpha2*rndm[0] ) {
261 epsilon =
G4Exp(-alpha1*rndm[1]);
265 epsilonsq = epsilon0sq + (1.- epsilon0sq)*rndm[1];
266 epsilon = sqrt(epsilonsq);
269 onecost = (1.-
epsilon)/(epsilon*E0_m);
270 sint2 = onecost*(2.-onecost);
271 greject = 1. - epsilon*sint2/(1.+ epsilonsq);
274 }
while (greject < rndm[2]);
275 gamEnergy1 = epsilon*gamEnergy0;
284 if(sint2 < 0.0) { sint2 = 0.0; }
285 costet = 1. - onecost;
286 sintet = sqrt(sint2);
287 phi = twopi * rndmEngineMod->
flat();
295 lv1.
set(gamEnergy1*v.
x(),gamEnergy1*v.
y(),gamEnergy1*v.
z(),gamEnergy1);
304 }
while ( eKinEnergy < 0.0 );
311 gamEnergy1 = lv1.
e();
331 fvect->push_back(dp);
332 }
else { eKinEnergy = 0.0; }
334 G4double edep = energy - gamEnergy1 - eKinEnergy;
339 if(fAtomDeexcitation) {
345 G4int nbefore = fvect->size();
347 G4int nafter = fvect->size();
349 for (
G4int j=nbefore; j<nafter; ++j) {
350 G4double e = ((*fvect)[j])->GetKineticEnergy();
351 if(esec + e > edep) {
354 ((*fvect)[j])->SetKineticEnergy(e);
367 for (
G4int jj=nafter-1; jj>j; --jj) {
378 if(std::abs(energy - gamEnergy1 - eKinEnergy - esec - edep) >
eV) {
379 G4cout <<
"### G4KleinNishinaModel dE(eV)= "
380 << (energy - gamEnergy1 - eKinEnergy - esec - edep)/
eV
382 <<
" E(keV)= " << energy/
keV
383 <<
" Ebind(keV)= " << bindingEnergy/
keV
384 <<
" Eg(keV)= " << gamEnergy1/
keV
385 <<
" Ee(keV)= " << eKinEnergy/
keV
386 <<
" Esec(keV)= " << esec/
keV
387 <<
" Edep(keV)= " << edep/
keV
Hep3Vector boostVector() const
G4double LowEnergyLimit() const
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
G4int GetNbOfAtomicShells() const
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
G4ParticleChangeForGamma * fParticleChange
static const G4int nlooplim
G4int GetNbOfShellElectrons(G4int index) const
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
static constexpr double twopi
static constexpr double electron_mass_c2
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
G4GLOB_DLL std::ostream G4cout
const G4ThreeVector & GetMomentumDirection() const
HepLorentzVector & boost(double, double, double)
Hep3Vector & rotateUz(const Hep3Vector &)
static constexpr double eV
G4double lowestSecondaryEnergy
G4double G4Log(G4double x)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
void set(double x, double y, double z, double t)
G4ParticleDefinition * theElectron
G4double energy(const ThreeVector &p, const G4double m)
G4ParticleDefinition * theGamma
void SetProposedKineticEnergy(G4double proposedKinEnergy)
G4double GetAtomicShell(G4int index) const
void ProposeTrackStatus(G4TrackStatus status)
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
G4double bindingEnergy(G4int A, G4int Z)
virtual void flatArray(const int size, double *vect)=0
static constexpr double keV
double epsilon(double density, double temperature)
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)