81 twoln10(2.0*
G4Log(10.0)),
112 if(isInitialised) {
return; }
114 isInitialised =
true;
136 if(cutEnergy < tmax) {
138 G4double xmin = cutEnergy/kineticEnergy;
143 G4double beta2 = tau*(tau + 2)/gamma2;
148 G4double gg = (2.0*gam - 1.0)/gamma2;
149 cross = ((xmax - xmin)*(1.0 - gg + 1.0/(xmin*xmax)
150 + 1.0/((1.0-xmin)*(1.0 - xmax)))
151 - gg*
G4Log( xmax*(1.0 - xmin)/(xmin*(1.0 - xmax)) ) ) / beta2;
165 cross = (xmax - xmin)*(1.0/(beta2*xmin*xmax) + b2
166 - 0.5*b3*(xmin + xmax)
167 + b4*(xmin*xmin + xmin*xmax + xmax*xmax)/3.0)
168 - b1*
G4Log(xmax/xmin);
234 dedx =
G4Log(2.0*(tau + 2.0)/eexc2) - 1.0 - beta2
235 +
G4Log((tau-d)*d) + tau/(tau-d)
236 + (0.5*d*d + (2.0*tau + 1.)*
G4Log(1. - d/tau))/gamma2;
245 dedx =
G4Log(2.0*(tau + 2.0)/eexc2) +
G4Log(tau*d)
246 - beta2*(tau + 2.0*d - y*(3.0*d2
247 + y*(d - d3 + y*(d2 - tau*d3 + d4))))/tau;
256 if (dedx < 0.0) { dedx = 0.0; }
260 if (kineticEnergy < th) {
261 x = kineticEnergy/th;
262 if(x > 0.25) { dedx /= sqrt(x); }
263 else { dedx *= 1.4*sqrt(x)/(0.1 + x); }
283 tmax = 0.5*kineticEnergy;
285 tmax = kineticEnergy;
287 if(maxEnergy < tmax) { tmax = maxEnergy; }
288 if(tmin >= tmax) {
return; }
303 G4double gg = (2.0*gam - 1.0)/gamma2;
305 grej = 1.0 - gg*xmax + xmax*xmax*(1.0 - gg + (1.0 - gg*y)/(y*y));
309 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xmax*rndm[0]);
311 z = 1.0 - gg*x + x*x*(1.0 - gg + (1.0 - gg*y)/(y*y));
322 }
while(grej * rndm[1] > z);
337 grej = 1.0 + (y*y*b4 - xmin*xmin*xmin*b3 + y*b2 - xmin*b1)*beta2;
340 x = xmin*xmax/(xmin*(1.0 - rndm[0]) + xmax*rndm[0]);
342 z = 1.0 + (y*y*b4 - x*y*b3 + y*b2 - x*b1)*beta2;
353 }
while(grej * rndm[1] > z);
356 G4double deltaKinEnergy = x * kineticEnergy;
370 sqrt(deltaKinEnergy * (deltaKinEnergy + 2.0*electron_mass_c2));
373 if(cost > 1.0) { cost = 1.0; }
374 G4double sint = sqrt((1.0 - cost)*(1.0 + cost));
378 deltaDirection.
set(sint*cos(phi),sint*sin(phi), cost) ;
385 vdp->push_back(delta);
388 kineticEnergy -= deltaKinEnergy;
390 finalP = finalP.
unit();
void set(double x, double y, double z)
G4IonisParamMat * GetIonisation() const
G4ParticleChangeForLoss * GetParticleChangeForLoss()
G4bool isElectron(G4int ityp)
G4double GetKineticEnergy() const
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &) override
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kineticEnergy, G4double Z, G4double A, G4double cutEnergy, G4double maxEnergy) override
static constexpr double twopi_mc2_rcl2
void SetParticle(const G4ParticleDefinition *p)
G4VEmAngularDistribution * GetAngularDistribution()
G4double GetZeffective() const
static constexpr double twopi
static constexpr double electron_mass_c2
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy) override
G4double GetTotalMomentum() const
G4ParticleChangeForLoss * fParticleChange
virtual G4ThreeVector & SampleDirection(const G4DynamicParticle *dp, G4double finalTotalEnergy, G4int Z, const G4Material *)=0
G4double GetElectronDensity() const
G4bool UseAngularGeneratorFlag() const
const G4ParticleDefinition * particle
const G4ThreeVector & GetMomentumDirection() const
G4MollerBhabhaModel(const G4ParticleDefinition *p=nullptr, const G4String &nam="MollerBhabha")
Hep3Vector & rotateUz(const Hep3Vector &)
void SetProposedKineticEnergy(G4double proposedKinEnergy)
void SetProposedMomentumDirection(const G4ThreeVector &dir)
virtual G4double CrossSectionPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy) override
G4double G4Log(G4double x)
G4ParticleDefinition * theElectron
G4double DensityCorrection(G4double x)
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double energy(const ThreeVector &p, const G4double m)
virtual G4double ComputeCrossSectionPerElectron(const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy, G4double maxEnergy)
void SetAngularDistribution(G4VEmAngularDistribution *)
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4double GetMeanExcitationEnergy() const
static G4Electron * Electron()
virtual G4double ComputeDEDXPerVolume(const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy) override
virtual ~G4MollerBhabhaModel()
virtual void flatArray(const int size, double *vect)=0
static constexpr double keV
virtual G4double MaxSecondaryEnergy(const G4ParticleDefinition *, G4double kinEnergy) final
G4ThreeVector GetMomentum() const
const G4Material * GetMaterial() const
G4int SelectRandomAtomNumber(const G4Material *)