Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LivermoreNuclearGammaConversionModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // Author: Sebastien Incerti
27 // 22 January 2012
28 // on base of G4LivermoreNuclearGammaConversionModel (original version)
29 // and G4LivermoreRayleighModel (MT version)
30 
32 #include "G4PhysicalConstants.hh"
33 #include "G4SystemOfUnits.hh"
34 #include "G4Log.hh"
35 #include "G4Exp.hh"
36 
37 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
38 
39 using namespace std;
40 
41 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
42 
43 G4int G4LivermoreNuclearGammaConversionModel::maxZ = 100;
44 G4LPhysicsFreeVector* G4LivermoreNuclearGammaConversionModel::data[] = {0};
45 
47 (const G4ParticleDefinition*, const G4String& nam)
48 :G4VEmModel(nam),isInitialised(false),smallEnergy(2.*MeV)
49 {
50  fParticleChange = 0;
51 
52  lowEnergyLimit = 2.0*electron_mass_c2;
53 
54  verboseLevel= 0;
55  // Verbosity scale for debugging purposes:
56  // 0 = nothing
57  // 1 = calculation of cross sections, file openings...
58  // 2 = entering in methods
59 
60  if(verboseLevel > 0)
61  {
62  G4cout << "G4LivermoreNuclearGammaConversionModel is constructed " << G4endl;
63  }
64 }
65 
66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
67 
69 {
70  if(IsMaster()) {
71  for(G4int i=0; i<maxZ; ++i) {
72  if(data[i]) {
73  delete data[i];
74  data[i] = 0;
75  }
76  }
77  }
78 }
79 
80 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
81 
83  const G4ParticleDefinition* particle,
84  const G4DataVector& cuts)
85 {
86 
87  if (verboseLevel > 1)
88  {
89  G4cout << "Calling Initialise() of G4LivermoreNuclearGammaConversionModel."
90  << G4endl
91  << "Energy range: "
92  << LowEnergyLimit() / MeV << " MeV - "
93  << HighEnergyLimit() / GeV << " GeV"
94  << G4endl;
95  }
96 
97  if(IsMaster())
98  {
99 
100  // Initialise element selector
101 
102  InitialiseElementSelectors(particle, cuts);
103 
104  // Access to elements
105 
106  char* path = getenv("G4LEDATA");
107 
108  G4ProductionCutsTable* theCoupleTable =
110 
111  G4int numOfCouples = theCoupleTable->GetTableSize();
112 
113  for(G4int i=0; i<numOfCouples; ++i)
114  {
115  const G4Material* material =
116  theCoupleTable->GetMaterialCutsCouple(i)->GetMaterial();
117  const G4ElementVector* theElementVector = material->GetElementVector();
118  G4int nelm = material->GetNumberOfElements();
119 
120  for (G4int j=0; j<nelm; ++j)
121  {
122  G4int Z = (G4int)(*theElementVector)[j]->GetZ();
123  if(Z < 1) { Z = 1; }
124  else if(Z > maxZ) { Z = maxZ; }
125  if(!data[Z]) { ReadData(Z, path); }
126  }
127  }
128  }
129  if(isInitialised) { return; }
130  fParticleChange = GetParticleChangeForGamma();
131  isInitialised = true;
132 }
133 
134 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
135 
137  const G4ParticleDefinition*, G4VEmModel* masterModel)
138 {
139  SetElementSelectors(masterModel->GetElementSelectors());
140 }
141 
142 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
143 
144 G4double
146  const G4ParticleDefinition*,
147  G4double)
148 {
149  return lowEnergyLimit;
150 }
151 
152 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
153 
154 void G4LivermoreNuclearGammaConversionModel::ReadData(size_t Z, const char* path)
155 {
156  if (verboseLevel > 1)
157  {
158  G4cout << "Calling ReadData() of G4LivermoreNuclearGammaConversionModel"
159  << G4endl;
160  }
161 
162 
163  if(data[Z]) { return; }
164 
165  const char* datadir = path;
166 
167  if(!datadir)
168  {
169  datadir = getenv("G4LEDATA");
170  if(!datadir)
171  {
172  G4Exception("G4LivermoreNuclearGammaConversionModel::ReadData()",
173  "em0006",FatalException,
174  "Environment variable G4LEDATA not defined");
175  return;
176  }
177  }
178 
179  //
180 
181  data[Z] = new G4LPhysicsFreeVector();
182 
183  //
184 
185  std::ostringstream ost;
186  ost << datadir << "livermore/pairdata/pp-pair-cs-" << Z <<".dat";
187  std::ifstream fin(ost.str().c_str());
188 
189  if( !fin.is_open())
190  {
192  ed << "G4LivermoreNuclearGammaConversionModel data file <" << ost.str().c_str()
193  << "> is not opened!" << G4endl;
194  G4Exception("G4LivermoreNuclearGammaConversionModel::ReadData()",
195  "em0003",FatalException,
196  ed,"G4LEDATA version should be G4EMLOW6.27 or later.");
197  return;
198  }
199 
200  else
201  {
202 
203  if(verboseLevel > 3) { G4cout << "File " << ost.str()
204  << " is opened by G4LivermoreNuclearGammaConversionModel" << G4endl;}
205 
206  data[Z]->Retrieve(fin, true);
207  }
208 
209  // Activation of spline interpolation
210  data[Z] ->SetSpline(true);
211 
212 }
213 
214 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
215 
216 G4double
218  G4double GammaEnergy,
219  G4double Z, G4double,
221 {
222  if (verboseLevel > 1)
223  {
224  G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreNuclearGammaConversionModel"
225  << G4endl;
226  }
227 
228  if (GammaEnergy < lowEnergyLimit) { return 0.0; }
229 
230  G4double xs = 0.0;
231 
232  G4int intZ=G4int(Z);
233 
234  if(intZ < 1 || intZ > maxZ) { return xs; }
235 
236  G4LPhysicsFreeVector* pv = data[intZ];
237 
238  // if element was not initialised
239  // do initialisation safely for MT mode
240  if(!pv)
241  {
242  InitialiseForElement(0, intZ);
243  pv = data[intZ];
244  if(!pv) { return xs; }
245  }
246  // x-section is taken from the table
247  xs = pv->Value(GammaEnergy);
248 
249  if(verboseLevel > 0)
250  {
251  G4int n = pv->GetVectorLength() - 1;
252  G4cout << "****** DEBUG: tcs value for Z=" << Z << " at energy (MeV)="
253  << GammaEnergy/MeV << G4endl;
254  G4cout << " cs (Geant4 internal unit)=" << xs << G4endl;
255  G4cout << " -> first cs value in EADL data file (iu) =" << (*pv)[0] << G4endl;
256  G4cout << " -> last cs value in EADL data file (iu) =" << (*pv)[n] << G4endl;
257  G4cout << "*********************************************************" << G4endl;
258  }
259 
260  return xs;
261 
262 }
263 
264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
265 
267  std::vector<G4DynamicParticle*>* fvect,
268  const G4MaterialCutsCouple* couple,
269  const G4DynamicParticle* aDynamicGamma,
271 {
272 
273 // The energies of the e+ e- secondaries are sampled using the Bethe - Heitler
274 // cross sections with Coulomb correction. A modified version of the random
275 // number techniques of Butcher & Messel is used (Nuc Phys 20(1960),15).
276 
277 // Note 1 : Effects due to the breakdown of the Born approximation at low
278 // energy are ignored.
279 // Note 2 : The differential cross section implicitly takes account of
280 // pair creation in both nuclear and atomic electron fields. However triplet
281 // prodution is not generated.
282 
283  if (verboseLevel > 1) {
284  G4cout << "Calling SampleSecondaries() of G4LivermoreNuclearGammaConversionModel"
285  << G4endl;
286  }
287 
288  G4double photonEnergy = aDynamicGamma->GetKineticEnergy();
289  G4ParticleMomentum photonDirection = aDynamicGamma->GetMomentumDirection();
290 
291  G4double epsilon ;
292  G4double epsilon0Local = electron_mass_c2 / photonEnergy ;
293 
294  // Do it fast if photon energy < 2. MeV
295  if (photonEnergy < smallEnergy )
296  {
297  epsilon = epsilon0Local + (0.5 - epsilon0Local) * G4UniformRand();
298  }
299  else
300  {
301  // Select randomly one element in the current material
302 
303  const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
304  const G4Element* element = SelectRandomAtom(couple,particle,photonEnergy);
305 
306  if (element == 0)
307  {
308  G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - element = 0"
309  << G4endl;
310  return;
311  }
312  G4IonisParamElm* ionisation = element->GetIonisation();
313  if (ionisation == 0)
314  {
315  G4cout << "G4LivermoreNuclearGammaConversionModel::SampleSecondaries - ionisation = 0"
316  << G4endl;
317  return;
318  }
319 
320  // Extract Coulomb factor for this Elements
321  G4double fZ = 8. * (ionisation->GetlogZ3());
322  if (photonEnergy > 50. * MeV) fZ += 8. * (element->GetfCoulomb());
323 
324  // Limits of the screening variable
325  G4double screenFactor = 136. * epsilon0Local / (element->GetIonisation()->GetZ3()) ;
326  G4double screenMax = G4Exp ((42.24 - fZ)/8.368) - 0.952 ;
327  G4double screenMin = std::min(4.*screenFactor,screenMax) ;
328 
329  // Limits of the energy sampling
330  G4double epsilon1 = 0.5 - 0.5 * std::sqrt(1. - screenMin / screenMax) ;
331  G4double epsilonMin = std::max(epsilon0Local,epsilon1);
332  G4double epsilonRange = 0.5 - epsilonMin ;
333 
334  // Sample the energy rate of the created electron (or positron)
335  G4double screen;
336  G4double gReject ;
337 
338  G4double f10 = ScreenFunction1(screenMin) - fZ;
339  G4double f20 = ScreenFunction2(screenMin) - fZ;
340  G4double normF1 = std::max(f10 * epsilonRange * epsilonRange,0.);
341  G4double normF2 = std::max(1.5 * f20,0.);
342 
343  do
344  {
345  if (normF1 / (normF1 + normF2) > G4UniformRand() )
346  {
347  epsilon = 0.5 - epsilonRange * std::pow(G4UniformRand(), 0.333333) ;
348  screen = screenFactor / (epsilon * (1. - epsilon));
349  gReject = (ScreenFunction1(screen) - fZ) / f10 ;
350  }
351  else
352  {
353  epsilon = epsilonMin + epsilonRange * G4UniformRand();
354  screen = screenFactor / (epsilon * (1 - epsilon));
355  gReject = (ScreenFunction2(screen) - fZ) / f20 ;
356  }
357  } while ( gReject < G4UniformRand() );
358 
359  } // End of epsilon sampling
360 
361  // Fix charges randomly
362 
363  G4double electronTotEnergy;
364  G4double positronTotEnergy;
365 
366  if (G4UniformRand() > 0.5)
367  {
368  electronTotEnergy = (1. - epsilon) * photonEnergy;
369  positronTotEnergy = epsilon * photonEnergy;
370  }
371  else
372  {
373  positronTotEnergy = (1. - epsilon) * photonEnergy;
374  electronTotEnergy = epsilon * photonEnergy;
375  }
376 
377  // Scattered electron (positron) angles. ( Z - axis along the parent photon)
378  // Universal distribution suggested by L. Urban (Geant3 manual (1993) Phys211),
379  // derived from Tsai distribution (Rev. Mod. Phys. 49, 421 (1977)
380 
381  G4double u;
382  const G4double a1 = 0.625;
383  G4double a2 = 3. * a1;
384  // G4double d = 27. ;
385 
386  // if (9. / (9. + d) > G4UniformRand())
387  if (0.25 > G4UniformRand())
388  {
389  u = - G4Log(G4UniformRand() * G4UniformRand()) / a1 ;
390  }
391  else
392  {
393  u = - G4Log(G4UniformRand() * G4UniformRand()) / a2 ;
394  }
395 
396  G4double thetaEle = u*electron_mass_c2/electronTotEnergy;
397  G4double thetaPos = u*electron_mass_c2/positronTotEnergy;
398  G4double phi = twopi * G4UniformRand();
399 
400  G4double dxEle= std::sin(thetaEle)*std::cos(phi),dyEle= std::sin(thetaEle)*std::sin(phi),dzEle=std::cos(thetaEle);
401  G4double dxPos=-std::sin(thetaPos)*std::cos(phi),dyPos=-std::sin(thetaPos)*std::sin(phi),dzPos=std::cos(thetaPos);
402 
403 
404  // Kinematics of the created pair:
405  // the electron and positron are assumed to have a symetric angular
406  // distribution with respect to the Z axis along the parent photon
407 
408  G4double electronKineEnergy = std::max(0.,electronTotEnergy - electron_mass_c2) ;
409 
410  G4ThreeVector electronDirection (dxEle, dyEle, dzEle);
411  electronDirection.rotateUz(photonDirection);
412 
414  electronDirection,
415  electronKineEnergy);
416 
417  // The e+ is always created
418  G4double positronKineEnergy = std::max(0.,positronTotEnergy - electron_mass_c2) ;
419 
420  G4ThreeVector positronDirection (dxPos, dyPos, dzPos);
421  positronDirection.rotateUz(photonDirection);
422 
423  // Create G4DynamicParticle object for the particle2
425  positronDirection,
426  positronKineEnergy);
427  // Fill output vector
428  fvect->push_back(particle1);
429  fvect->push_back(particle2);
430 
431  // kill incident photon
432  fParticleChange->SetProposedKineticEnergy(0.);
433  fParticleChange->ProposeTrackStatus(fStopAndKill);
434 
435 }
436 
437 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
438 
439 G4double
440 G4LivermoreNuclearGammaConversionModel::ScreenFunction1(G4double screenVariable)
441 {
442  // Compute the value of the screening function 3*phi1 - phi2
443 
444  G4double value;
445 
446  if (screenVariable > 1.)
447  value = 42.24 - 8.368 * G4Log(screenVariable + 0.952);
448  else
449  value = 42.392 - screenVariable * (7.796 - 1.961 * screenVariable);
450 
451  return value;
452 }
453 
454 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
455 
456 G4double
457 G4LivermoreNuclearGammaConversionModel::ScreenFunction2(G4double screenVariable)
458 {
459  // Compute the value of the screening function 1.5*phi1 - 0.5*phi2
460 
461  G4double value;
462 
463  if (screenVariable > 1.)
464  value = 42.24 - 8.368 * G4Log(screenVariable + 0.952);
465  else
466  value = 41.405 - screenVariable * (5.828 - 0.8945 * screenVariable);
467 
468  return value;
469 }
470 
471 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
472 
473 #include "G4AutoLock.hh"
474 namespace { G4Mutex LivermoreNuclearGammaConversionModelMutex = G4MUTEX_INITIALIZER; }
475 
477  const G4ParticleDefinition*,
478  G4int Z)
479 {
480  G4AutoLock l(&LivermoreNuclearGammaConversionModelMutex);
481  // G4cout << "G4LivermoreNuclearGammaConversionModel::InitialiseForElement Z= "
482  // << Z << G4endl;
483  if(!data[Z]) { ReadData(Z); }
484  l.unlock();
485 }
486 
487 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
virtual void InitialiseLocal(const G4ParticleDefinition *, G4VEmModel *masterModel)
std::vector< G4Element * > G4ElementVector
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76
G4double GetKineticEnergy() const
G4LivermoreNuclearGammaConversionModel(const G4ParticleDefinition *p=0, const G4String &nam="LivermoreNuclearConversion")
G4double GetfCoulomb() const
Definition: G4Element.hh:191
G4ParticleDefinition * GetDefinition() const
size_t GetVectorLength() const
const G4ElementVector * GetElementVector() const
Definition: G4Material.hh:190
int G4int
Definition: G4Types.hh:78
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:175
static constexpr double twopi
Definition: G4SIunits.hh:76
static constexpr double electron_mass_c2
const XML_Char const XML_Char * data
Definition: expat.h:268
#define G4UniformRand()
Definition: Randomize.hh:97
G4GLOB_DLL std::ostream G4cout
const XML_Char int const XML_Char * value
Definition: expat.h:331
const G4ThreeVector & GetMomentumDirection() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:38
virtual G4double ComputeCrossSectionPerAtom(const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
std::vector< G4EmElementSelector * > * GetElementSelectors()
Definition: G4VEmModel.hh:801
G4double Value(G4double theEnergy, size_t &lastidx) const
G4double GetlogZ3() const
virtual G4double MinPrimaryEnergy(const G4Material *, const G4ParticleDefinition *, G4double)
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4double G4Log(G4double x)
Definition: G4Log.hh:230
virtual void SampleSecondaries(std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
static G4ProductionCutsTable * GetProductionCutsTable()
G4int G4Mutex
Definition: G4Threading.hh:173
static G4Positron * Positron()
Definition: G4Positron.cc:94
virtual void InitialiseForElement(const G4ParticleDefinition *, G4int Z)
const G4MaterialCutsCouple * GetMaterialCutsCouple(G4int i) const
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4IonisParamElm * GetIonisation() const
Definition: G4Element.hh:199
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
virtual void Initialise(const G4ParticleDefinition *, const G4DataVector &)
static constexpr double GeV
Definition: G4SIunits.hh:217
static G4Electron * Electron()
Definition: G4Electron.cc:94
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
size_t GetNumberOfElements() const
Definition: G4Material.hh:186
double G4double
Definition: G4Types.hh:76
G4double GetZ3() const
double epsilon(double density, double temperature)
const G4Material * GetMaterial() const