Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4INCLParticleEntryChannel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
39 #include "G4INCLRootFinder.hh"
40 #include "G4INCLIntersection.hh"
41 #include <algorithm>
42 
43 namespace G4INCL {
44 
46  :theNucleus(n), theParticle(p)
47  {}
48 
50  {}
51 
53  // Behaves slightly differency if a third body (the projectile) is present
54  G4bool isNN = theNucleus->isNucleusNucleusCollision();
55 
56  /* Corrections to the energy of the entering nucleon
57  *
58  * In particle-nucleus reactions, the goal of this correction is to satisfy
59  * energy conservation in particle-nucleus reactions using real particle
60  * and nuclear masses.
61  *
62  * In nucleus-nucleus reactions, in addition to the above, the correction
63  * is determined by a model for the excitation energy of the
64  * quasi-projectile (QP). The energy of the entering nucleon is such that
65  * the QP excitation energy, as determined by conservation, is what given
66  * by our model.
67  *
68  * Possible choices for the correction (or, equivalently, for the QP
69  * excitation energy):
70  *
71  * 1. the correction is 0. (same as in particle-nucleus);
72  * 2. the correction is the separation energy of the entering nucleon in
73  * the current QP;
74  * 3. the QP excitation energy is given by A. Boudard's algorithm, as
75  * implemented in INCL4.2-HI/Geant4.
76  * 4. the QP excitation energy vanishes.
77  *
78  * Ideally, the QP excitation energy should always be >=0. Algorithms 1.
79  * and 2. do not guarantee this, although violations to the rule seem to be
80  * more severe for 1. than for 2.. Algorithms 3. and 4., by construction,
81  * yields non-negative QP excitation energies.
82  */
83  G4double theCorrection;
84  if(isNN) {
85 // assert(theParticle->isNucleon());
86  ProjectileRemnant * const projectileRemnant = theNucleus->getProjectileRemnant();
87 // assert(projectileRemnant);
88 
89  // No correction (model 1. above)
90  /*
91  theCorrection = theParticle->getEmissionQValueCorrection(
92  theNucleus->getA() + theParticle->getA(),
93  theNucleus->getZ() + theParticle->getZ())
94  + theParticle->getTableMass() - theParticle->getINCLMass();
95  const G4double theProjectileCorrection = 0.;
96  */
97 
98  // Correct the energy of the entering particle for the Q-value of the
99  // emission from the projectile (model 2. above)
100  /*
101  theCorrection = theParticle->getTransferQValueCorrection(
102  projectileRemnant->getA(), projectileRemnant->getZ(),
103  theNucleus->getA(), theNucleus->getZ());
104  G4double theProjectileCorrection;
105  if(projectileRemnant->getA()>theParticle->getA()) { // if there are any particles left
106  // Compute the projectile Q-value (to be used as a correction to the
107  // other components of the projectile remnant)
108  theProjectileCorrection = ParticleTable::getTableQValue(
109  projectileRemnant->getA() - theParticle->getA(),
110  projectileRemnant->getZ() - theParticle->getZ(),
111  theParticle->getA(),
112  theParticle->getZ());
113  } else
114  theProjectileCorrection = 0.;
115  */
116 
117  // Fix the correction in such a way that the quasi-projectile excitation
118  // energy is given by A. Boudard's INCL4.2-HI model (model 3. above).
119  const G4double theProjectileExcitationEnergy =
120  (projectileRemnant->getA()-theParticle->getA()>1) ?
121  (projectileRemnant->computeExcitationEnergyExcept(theParticle->getID())) :
122  0.;
123  // Set the projectile excitation energy to zero (cold quasi-projectile,
124  // model 4. above).
125  // const G4double theProjectileExcitationEnergy = 0.;
126  // The part that follows is common to model 3. and 4.
127  const G4double theProjectileEffectiveMass =
128  ParticleTable::getTableMass(projectileRemnant->getA() - theParticle->getA(), projectileRemnant->getZ() - theParticle->getZ())
129  + theProjectileExcitationEnergy;
130  const ThreeVector &theProjectileMomentum = projectileRemnant->getMomentum() - theParticle->getMomentum();
131  const G4double theProjectileEnergy = std::sqrt(theProjectileMomentum.mag2() + theProjectileEffectiveMass*theProjectileEffectiveMass);
132  const G4double theProjectileCorrection = theProjectileEnergy - (projectileRemnant->getEnergy() - theParticle->getEnergy());
133  theCorrection = theParticle->getEmissionQValueCorrection(
134  theNucleus->getA() + theParticle->getA(),
135  theNucleus->getZ() + theParticle->getZ())
136  + theParticle->getTableMass() - theParticle->getINCLMass()
137  + theProjectileCorrection;
138  // end of part common to model 3. and 4.
139 
140 
141  projectileRemnant->removeParticle(theParticle, theProjectileCorrection);
142  } else {
143  const G4int ACN = theNucleus->getA() + theParticle->getA();
144  const G4int ZCN = theNucleus->getZ() + theParticle->getZ();
145  // Correction to the Q-value of the entering particle
146  theCorrection = theParticle->getEmissionQValueCorrection(ACN,ZCN);
147  INCL_DEBUG("The following Particle enters with correction " << theCorrection << '\n'
148  << theParticle->print() << '\n');
149  }
150 
151  const G4double energyBefore = theParticle->getEnergy() - theCorrection;
152  G4bool success = particleEnters(theCorrection);
153  fs->addEnteringParticle(theParticle);
154 
155  if(!success) {
156  fs->makeParticleBelowZero();
157  } else if(theParticle->isNucleon() &&
158  theParticle->getKineticEnergy()<theNucleus->getPotential()->getFermiEnergy(theParticle)) {
159  // If the participant is a nucleon entering below its Fermi energy, force a
160  // compound nucleus
162  }
163 
164  fs->setTotalEnergyBeforeInteraction(energyBefore);
165  }
166 
167  G4bool ParticleEntryChannel::particleEnters(const G4double theQValueCorrection) {
168 
169  // \todo{this is the place to add refraction}
170 
171  theParticle->setINCLMass(); // Will automatically put the particle on shell
172 
173  // Add the nuclear potential to the kinetic energy when entering the
174  // nucleus
175 
176  class IncomingEFunctor : public RootFunctor {
177  public:
178  IncomingEFunctor(Particle * const p, Nucleus const * const n, const G4double correction) :
179  RootFunctor(0., 1E6),
180  theParticle(p),
181  thePotential(n->getPotential()),
182  theEnergy(theParticle->getEnergy()),
183  theMass(theParticle->getMass()),
184  theQValueCorrection(correction),
185  refraction(n->getStore()->getConfig()->getRefraction()),
186  theMomentumDirection(theParticle->getMomentum())
187  {
188  if(refraction) {
189  const ThreeVector &position = theParticle->getPosition();
190  const G4double r2 = position.mag2();
191  if(r2>0.)
192  normal = - position / std::sqrt(r2);
193  G4double cosIncidenceAngle = theParticle->getCosRPAngle();
194  if(cosIncidenceAngle < -1.)
195  sinIncidenceAnglePOut = 0.;
196  else
197  sinIncidenceAnglePOut = theMomentumDirection.mag()*std::sqrt(1.-cosIncidenceAngle*cosIncidenceAngle);
198  } else {
199  sinIncidenceAnglePOut = 0.;
200  }
201  }
202  ~IncomingEFunctor() {}
203  G4double operator()(const G4double v) const {
204  G4double energyInside = std::max(theMass, theEnergy + v - theQValueCorrection);
205  theParticle->setEnergy(energyInside);
206  theParticle->setPotentialEnergy(v);
207  if(refraction) {
208  // Compute the new direction of the particle momentum
209  const G4double pIn = std::sqrt(energyInside*energyInside-theMass*theMass);
210  const G4double sinRefractionAngle = sinIncidenceAnglePOut/pIn;
211  const G4double cosRefractionAngle = (sinRefractionAngle>1.) ? 0. : std::sqrt(1.-sinRefractionAngle*sinRefractionAngle);
212  const ThreeVector momentumInside = theMomentumDirection - normal * normal.dot(theMomentumDirection) + normal * (pIn * cosRefractionAngle);
213  theParticle->setMomentum(momentumInside);
214  } else {
215  theParticle->setMomentum(theMomentumDirection); // keep the same direction
216  }
217  // Scale the particle momentum
218  theParticle->adjustMomentumFromEnergy();
219  return v - thePotential->computePotentialEnergy(theParticle);
220  }
221  void cleanUp(const G4bool /*success*/) const {}
222  private:
223  Particle *theParticle;
224  NuclearPotential::INuclearPotential const *thePotential;
225  const G4double theEnergy;
226  const G4double theMass;
227  const G4double theQValueCorrection;
228  const G4bool refraction;
229  const ThreeVector theMomentumDirection;
230  ThreeVector normal;
231  G4double sinIncidenceAnglePOut;
232  } theIncomingEFunctor(theParticle,theNucleus,theQValueCorrection);
233 
234  G4double v = theNucleus->getPotential()->computePotentialEnergy(theParticle);
235  if(theParticle->getKineticEnergy()+v-theQValueCorrection<0.) { // Particle entering below 0. Die gracefully
236  INCL_DEBUG("Particle " << theParticle->getID() << " is trying to enter below 0" << '\n');
237  return false;
238  }
239  const RootFinder::Solution theSolution = RootFinder::solve(&theIncomingEFunctor, v);
240  if(theSolution.success) { // Apply the solution
241  theIncomingEFunctor(theSolution.x);
242  INCL_DEBUG("Particle successfully entered:\n" << theParticle->print() << '\n');
243  } else {
244  INCL_WARN("Couldn't compute the potential for incoming particle, root-finding algorithm failed." << '\n');
245  }
246  return theSolution.success;
247  }
248 
249 }
250 
G4int getA() const
Returns the baryon number.
G4bool isNucleusNucleusCollision() const
Is it a nucleus-nucleus collision?
const char * p
Definition: xmltok.h:285
const G4INCL::ThreeVector & getMomentum() const
std::string print() const
G4double getEnergy() const
void setINCLMass()
Set the mass of the Particle to its table mass.
#define INCL_WARN(x)
G4double getINCLMass() const
Get the INCL particle mass.
ParticleEntryChannel(Nucleus *n, Particle *p)
int G4int
Definition: G4Types.hh:78
G4double mag2() const
virtual ~ParticleEntryChannel()
G4double getFermiEnergy(const Particle *const p) const
Return the Fermi energy for a particle.
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:77
bool G4bool
Definition: G4Types.hh:79
G4int getZ() const
Returns the charge number.
G4double computeExcitationEnergyExcept(const long exceptID) const
Compute the excitation energy when a nucleon is removed.
void fillFinalState(FinalState *fs)
void setTotalEnergyBeforeInteraction(G4double E)
NuclearPotential::INuclearPotential const * getPotential() const
Getter for thePotential.
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.
Solution solve(RootFunctor const *const f, const G4double x0)
Numerically solve a one-dimensional equation.
G4bool isNucleon() const
void removeParticle(Particle *const p, const G4double theProjectileCorrection)
Remove a nucleon from the projectile remnant.
virtual G4double getTableMass() const
Get the tabulated particle mass.
ProjectileRemnant * getProjectileRemnant() const
Get the projectile remnant.
G4double getKineticEnergy() const
Get the particle kinetic energy.
virtual G4double computePotentialEnergy(const Particle *const p) const =0
double G4double
Definition: G4Types.hh:76
void addEnteringParticle(Particle *p)
G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const
Computes correction on the emission Q-value.
#define INCL_DEBUG(x)
Simple class for computing intersections between a straight line and a sphere.
Static root-finder algorithm.
long getID() const