Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4INCL::ParticleEntryChannel Class Reference

#include <G4INCLParticleEntryChannel.hh>

Inheritance diagram for G4INCL::ParticleEntryChannel:
Collaboration diagram for G4INCL::ParticleEntryChannel:

Public Member Functions

 ParticleEntryChannel (Nucleus *n, Particle *p)
 
virtual ~ParticleEntryChannel ()
 
void fillFinalState (FinalState *fs)
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 
FinalStategetFinalState ()
 

Detailed Description

Definition at line 49 of file G4INCLParticleEntryChannel.hh.

Constructor & Destructor Documentation

G4INCL::ParticleEntryChannel::ParticleEntryChannel ( Nucleus n,
Particle p 
)

Definition at line 45 of file G4INCLParticleEntryChannel.cc.

46  :theNucleus(n), theParticle(p)
47  {}
const char * p
Definition: xmltok.h:285
G4INCL::ParticleEntryChannel::~ParticleEntryChannel ( )
virtual

Definition at line 49 of file G4INCLParticleEntryChannel.cc.

50  {}

Member Function Documentation

void G4INCL::ParticleEntryChannel::fillFinalState ( FinalState fs)
virtual

Implements G4INCL::IChannel.

Definition at line 52 of file G4INCLParticleEntryChannel.cc.

52  {
53  // Behaves slightly differency if a third body (the projectile) is present
54  G4bool isNN = theNucleus->isNucleusNucleusCollision();
55 
56  /* Corrections to the energy of the entering nucleon
57  *
58  * In particle-nucleus reactions, the goal of this correction is to satisfy
59  * energy conservation in particle-nucleus reactions using real particle
60  * and nuclear masses.
61  *
62  * In nucleus-nucleus reactions, in addition to the above, the correction
63  * is determined by a model for the excitation energy of the
64  * quasi-projectile (QP). The energy of the entering nucleon is such that
65  * the QP excitation energy, as determined by conservation, is what given
66  * by our model.
67  *
68  * Possible choices for the correction (or, equivalently, for the QP
69  * excitation energy):
70  *
71  * 1. the correction is 0. (same as in particle-nucleus);
72  * 2. the correction is the separation energy of the entering nucleon in
73  * the current QP;
74  * 3. the QP excitation energy is given by A. Boudard's algorithm, as
75  * implemented in INCL4.2-HI/Geant4.
76  * 4. the QP excitation energy vanishes.
77  *
78  * Ideally, the QP excitation energy should always be >=0. Algorithms 1.
79  * and 2. do not guarantee this, although violations to the rule seem to be
80  * more severe for 1. than for 2.. Algorithms 3. and 4., by construction,
81  * yields non-negative QP excitation energies.
82  */
83  G4double theCorrection;
84  if(isNN) {
85 // assert(theParticle->isNucleon());
86  ProjectileRemnant * const projectileRemnant = theNucleus->getProjectileRemnant();
87 // assert(projectileRemnant);
88 
89  // No correction (model 1. above)
90  /*
91  theCorrection = theParticle->getEmissionQValueCorrection(
92  theNucleus->getA() + theParticle->getA(),
93  theNucleus->getZ() + theParticle->getZ())
94  + theParticle->getTableMass() - theParticle->getINCLMass();
95  const G4double theProjectileCorrection = 0.;
96  */
97 
98  // Correct the energy of the entering particle for the Q-value of the
99  // emission from the projectile (model 2. above)
100  /*
101  theCorrection = theParticle->getTransferQValueCorrection(
102  projectileRemnant->getA(), projectileRemnant->getZ(),
103  theNucleus->getA(), theNucleus->getZ());
104  G4double theProjectileCorrection;
105  if(projectileRemnant->getA()>theParticle->getA()) { // if there are any particles left
106  // Compute the projectile Q-value (to be used as a correction to the
107  // other components of the projectile remnant)
108  theProjectileCorrection = ParticleTable::getTableQValue(
109  projectileRemnant->getA() - theParticle->getA(),
110  projectileRemnant->getZ() - theParticle->getZ(),
111  theParticle->getA(),
112  theParticle->getZ());
113  } else
114  theProjectileCorrection = 0.;
115  */
116 
117  // Fix the correction in such a way that the quasi-projectile excitation
118  // energy is given by A. Boudard's INCL4.2-HI model (model 3. above).
119  const G4double theProjectileExcitationEnergy =
120  (projectileRemnant->getA()-theParticle->getA()>1) ?
121  (projectileRemnant->computeExcitationEnergyExcept(theParticle->getID())) :
122  0.;
123  // Set the projectile excitation energy to zero (cold quasi-projectile,
124  // model 4. above).
125  // const G4double theProjectileExcitationEnergy = 0.;
126  // The part that follows is common to model 3. and 4.
127  const G4double theProjectileEffectiveMass =
128  ParticleTable::getTableMass(projectileRemnant->getA() - theParticle->getA(), projectileRemnant->getZ() - theParticle->getZ())
129  + theProjectileExcitationEnergy;
130  const ThreeVector &theProjectileMomentum = projectileRemnant->getMomentum() - theParticle->getMomentum();
131  const G4double theProjectileEnergy = std::sqrt(theProjectileMomentum.mag2() + theProjectileEffectiveMass*theProjectileEffectiveMass);
132  const G4double theProjectileCorrection = theProjectileEnergy - (projectileRemnant->getEnergy() - theParticle->getEnergy());
133  theCorrection = theParticle->getEmissionQValueCorrection(
134  theNucleus->getA() + theParticle->getA(),
135  theNucleus->getZ() + theParticle->getZ())
136  + theParticle->getTableMass() - theParticle->getINCLMass()
137  + theProjectileCorrection;
138  // end of part common to model 3. and 4.
139 
140 
141  projectileRemnant->removeParticle(theParticle, theProjectileCorrection);
142  } else {
143  const G4int ACN = theNucleus->getA() + theParticle->getA();
144  const G4int ZCN = theNucleus->getZ() + theParticle->getZ();
145  // Correction to the Q-value of the entering particle
146  theCorrection = theParticle->getEmissionQValueCorrection(ACN,ZCN);
147  INCL_DEBUG("The following Particle enters with correction " << theCorrection << '\n'
148  << theParticle->print() << '\n');
149  }
150 
151  const G4double energyBefore = theParticle->getEnergy() - theCorrection;
152  G4bool success = particleEnters(theCorrection);
153  fs->addEnteringParticle(theParticle);
154 
155  if(!success) {
156  fs->makeParticleBelowZero();
157  } else if(theParticle->isNucleon() &&
158  theParticle->getKineticEnergy()<theNucleus->getPotential()->getFermiEnergy(theParticle)) {
159  // If the participant is a nucleon entering below its Fermi energy, force a
160  // compound nucleus
161  fs->makeParticleBelowFermi();
162  }
163 
164  fs->setTotalEnergyBeforeInteraction(energyBefore);
165  }
G4int getA() const
Returns the baryon number.
G4bool isNucleusNucleusCollision() const
Is it a nucleus-nucleus collision?
const G4INCL::ThreeVector & getMomentum() const
std::string print() const
G4double getEnergy() const
G4double getINCLMass() const
Get the INCL particle mass.
int G4int
Definition: G4Types.hh:78
G4double getFermiEnergy(const Particle *const p) const
Return the Fermi energy for a particle.
bool G4bool
Definition: G4Types.hh:79
G4int getZ() const
Returns the charge number.
NuclearPotential::INuclearPotential const * getPotential() const
Getter for thePotential.
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.
G4bool isNucleon() const
virtual G4double getTableMass() const
Get the tabulated particle mass.
ProjectileRemnant * getProjectileRemnant() const
Get the projectile remnant.
G4double getKineticEnergy() const
Get the particle kinetic energy.
double G4double
Definition: G4Types.hh:76
G4double getEmissionQValueCorrection(const G4int AParent, const G4int ZParent) const
Computes correction on the emission Q-value.
#define INCL_DEBUG(x)
long getID() const

Here is the call graph for this function:


The documentation for this class was generated from the following files: