Geant4_10
G4RPGAntiLambdaInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 
30 #include "G4PhysicalConstants.hh"
31 #include "G4SystemOfUnits.hh"
32 #include "Randomize.hh"
33 
36  G4Nucleus &targetNucleus )
37 {
38  const G4HadProjectile *originalIncident = &aTrack;
39 
40  // Choose the target particle
41 
42  G4DynamicParticle *originalTarget = targetNucleus.ReturnTargetParticle();
43 
44  if( verboseLevel > 1 )
45  {
46  const G4Material *targetMaterial = aTrack.GetMaterial();
47  G4cout << "G4RPGAntiLambdaInelastic::ApplyYourself called" << G4endl;
48  G4cout << "kinetic energy = " << originalIncident->GetKineticEnergy()/MeV << "MeV, ";
49  G4cout << "target material = " << targetMaterial->GetName() << ", ";
50  G4cout << "target particle = " << originalTarget->GetDefinition()->GetParticleName()
51  << G4endl;
52  }
53 
54  // Fermi motion and evaporation
55  // As of Geant3, the Fermi energy calculation had not been Done
56 
57  G4double ek = originalIncident->GetKineticEnergy()/MeV;
58  G4double amas = originalIncident->GetDefinition()->GetPDGMass()/MeV;
59  G4ReactionProduct modifiedOriginal;
60  modifiedOriginal = *originalIncident;
61 
62  G4double tkin = targetNucleus.Cinema( ek );
63  ek += tkin;
64  modifiedOriginal.SetKineticEnergy( ek*MeV );
65  G4double et = ek + amas;
66  G4double p = std::sqrt( std::abs((et-amas)*(et+amas)) );
67  G4double pp = modifiedOriginal.GetMomentum().mag()/MeV;
68  if( pp > 0.0 )
69  {
70  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
71  modifiedOriginal.SetMomentum( momentum * (p/pp) );
72  }
73  //
74  // calculate black track energies
75  //
76  tkin = targetNucleus.EvaporationEffects( ek );
77  ek -= tkin;
78  modifiedOriginal.SetKineticEnergy( ek*MeV );
79  et = ek + amas;
80  p = std::sqrt( std::abs((et-amas)*(et+amas)) );
81  pp = modifiedOriginal.GetMomentum().mag()/MeV;
82  if( pp > 0.0 )
83  {
84  G4ThreeVector momentum = modifiedOriginal.GetMomentum();
85  modifiedOriginal.SetMomentum( momentum * (p/pp) );
86  }
87 
88  G4ReactionProduct currentParticle = modifiedOriginal;
89  G4ReactionProduct targetParticle;
90  targetParticle = *originalTarget;
91  currentParticle.SetSide( 1 ); // incident always goes in forward hemisphere
92  targetParticle.SetSide( -1 ); // target always goes in backward hemisphere
93  G4bool incidentHasChanged = false;
94  G4bool targetHasChanged = false;
95  G4bool quasiElastic = false;
96  G4FastVector<G4ReactionProduct,GHADLISTSIZE> vec; // vec will contain the secondary particles
97  G4int vecLen = 0;
98  vec.Initialize( 0 );
99 
100  const G4double cutOff = 0.1;
101  const G4double anni = std::min( 1.3*currentParticle.GetTotalMomentum()/GeV, 0.4 );
102  if( (originalIncident->GetKineticEnergy()/MeV > cutOff) || (G4UniformRand() > anni) )
103  Cascade( vec, vecLen,
104  originalIncident, currentParticle, targetParticle,
105  incidentHasChanged, targetHasChanged, quasiElastic );
106 
107  CalculateMomenta( vec, vecLen,
108  originalIncident, originalTarget, modifiedOriginal,
109  targetNucleus, currentParticle, targetParticle,
110  incidentHasChanged, targetHasChanged, quasiElastic );
111 
112  SetUpChange( vec, vecLen,
113  currentParticle, targetParticle,
114  incidentHasChanged );
115 
116  delete originalTarget;
117  return &theParticleChange;
118 }
119 
120 
121 void G4RPGAntiLambdaInelastic::Cascade(
123  G4int &vecLen,
124  const G4HadProjectile *originalIncident,
125  G4ReactionProduct &currentParticle,
126  G4ReactionProduct &targetParticle,
127  G4bool &incidentHasChanged,
128  G4bool &targetHasChanged,
129  G4bool &quasiElastic )
130 {
131  // Derived from H. Fesefeldt's original FORTRAN code CASAL0
132  // AntiLambda undergoes interaction with nucleon within a nucleus. Check if it is
133  // energetically possible to produce pions/kaons. In not, assume nuclear excitation
134  // occurs and input particle is degraded in energy. No other particles are produced.
135  // If reaction is possible, find the correct number of pions/protons/neutrons
136  // produced using an interpolation to multiplicity data. Replace some pions or
137  // protons/neutrons by kaons or strange baryons according to the average
138  // multiplicity per Inelastic reaction.
139 
140  const G4double mOriginal = originalIncident->GetDefinition()->GetPDGMass()/MeV;
141  const G4double etOriginal = originalIncident->GetTotalEnergy()/MeV;
142  const G4double targetMass = targetParticle.GetMass()/MeV;
143  const G4double pOriginal = originalIncident->GetTotalMomentum()/GeV;
144  G4double centerofmassEnergy = std::sqrt( mOriginal*mOriginal +
145  targetMass*targetMass +
146  2.0*targetMass*etOriginal );
147  G4double availableEnergy = centerofmassEnergy-(targetMass+mOriginal);
148 
149  static G4ThreadLocal G4bool first = true;
150  const G4int numMul = 1200;
151  const G4int numMulA = 400;
152  const G4int numSec = 60;
153  static G4ThreadLocal G4double protmul[numMul], protnorm[numSec]; // proton constants
154  static G4ThreadLocal G4double neutmul[numMul], neutnorm[numSec]; // neutron constants
155  static G4ThreadLocal G4double protmulA[numMulA], protnormA[numSec]; // proton constants
156  static G4ThreadLocal G4double neutmulA[numMulA], neutnormA[numSec]; // neutron constants
157  // np = number of pi+, nneg = number of pi-, nz = number of pi0
158  G4int nt=0, np=0, nneg=0, nz=0;
159  G4double test;
160  const G4double c = 1.25;
161  const G4double b[] = { 0.7, 0.7 };
162  if( first ) // compute normalization constants, this will only be Done once
163  {
164  first = false;
165  G4int i;
166  for( i=0; i<numMul; ++i )protmul[i] = 0.0;
167  for( i=0; i<numSec; ++i )protnorm[i] = 0.0;
168  G4int counter = -1;
169  for( np=0; np<(numSec/3); ++np )
170  {
171  for( nneg=std::max(0,np-2); nneg<=(np+1); ++nneg )
172  {
173  for( nz=0; nz<numSec/3; ++nz )
174  {
175  if( ++counter < numMul )
176  {
177  nt = np+nneg+nz;
178  if( nt>0 && nt<=numSec )
179  {
180  protmul[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
181  protnorm[nt-1] += protmul[counter];
182  }
183  }
184  }
185  }
186  }
187  for( i=0; i<numMul; ++i )neutmul[i] = 0.0;
188  for( i=0; i<numSec; ++i )neutnorm[i] = 0.0;
189  counter = -1;
190  for( np=0; np<numSec/3; ++np )
191  {
192  for( nneg=std::max(0,np-1); nneg<=(np+2); ++nneg )
193  {
194  for( nz=0; nz<numSec/3; ++nz )
195  {
196  if( ++counter < numMul )
197  {
198  nt = np+nneg+nz;
199  if( nt>0 && nt<=numSec )
200  {
201  neutmul[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
202  neutnorm[nt-1] += neutmul[counter];
203  }
204  }
205  }
206  }
207  }
208  for( i=0; i<numSec; ++i )
209  {
210  if( protnorm[i] > 0.0 )protnorm[i] = 1.0/protnorm[i];
211  if( neutnorm[i] > 0.0 )neutnorm[i] = 1.0/neutnorm[i];
212  }
213  //
214  // do the same for annihilation channels
215  //
216  for( i=0; i<numMulA; ++i )protmulA[i] = 0.0;
217  for( i=0; i<numSec; ++i )protnormA[i] = 0.0;
218  counter = -1;
219  for( np=1; np<(numSec/3); ++np )
220  {
221  nneg = np-1;
222  for( nz=0; nz<numSec/3; ++nz )
223  {
224  if( ++counter < numMulA )
225  {
226  nt = np+nneg+nz;
227  if( nt>1 && nt<=numSec )
228  {
229  protmulA[counter] = Pmltpc(np,nneg,nz,nt,b[0],c);
230  protnormA[nt-1] += protmulA[counter];
231  }
232  }
233  }
234  }
235  for( i=0; i<numMulA; ++i )neutmulA[i] = 0.0;
236  for( i=0; i<numSec; ++i )neutnormA[i] = 0.0;
237  counter = -1;
238  for( np=0; np<numSec/3; ++np )
239  {
240  nneg = np;
241  for( nz=0; nz<numSec/3; ++nz )
242  {
243  if( ++counter < numMulA )
244  {
245  nt = np+nneg+nz;
246  if( nt>1 && nt<=numSec )
247  {
248  neutmulA[counter] = Pmltpc(np,nneg,nz,nt,b[1],c);
249  neutnormA[nt-1] += neutmulA[counter];
250  }
251  }
252  }
253  }
254  for( i=0; i<numSec; ++i )
255  {
256  if( protnormA[i] > 0.0 )protnormA[i] = 1.0/protnormA[i];
257  if( neutnormA[i] > 0.0 )neutnormA[i] = 1.0/neutnormA[i];
258  }
259  } // end of initialization
260  const G4double expxu = 82.; // upper bound for arg. of exp
261  const G4double expxl = -expxu; // lower bound for arg. of exp
262 
274  const G4double anhl[] = {1.00,1.00,1.00,1.00,1.00,1.00,1.00,1.00,0.97,0.88,
275  0.85,0.81,0.75,0.64,0.64,0.55,0.55,0.45,0.47,0.40,
276  0.39,0.36,0.33,0.10,0.01};
277  G4int iplab = G4int( pOriginal*10.0 );
278  if( iplab > 9 )iplab = G4int( (pOriginal- 1.0)*5.0 ) + 10;
279  if( iplab > 14 )iplab = G4int( pOriginal- 2.0 ) + 15;
280  if( iplab > 22 )iplab = G4int( (pOriginal-10.0)/10.0 ) + 23;
281  if( iplab > 24 )iplab = 24;
282  if( G4UniformRand() > anhl[iplab] )
283  {
284  if( availableEnergy <= aPiPlus->GetPDGMass()/MeV )
285  { // not energetically possible to produce pion(s)
286  quasiElastic = true;
287  return;
288  }
289  G4double n, anpn;
290  GetNormalizationConstant( availableEnergy, n, anpn );
291  G4double ran = G4UniformRand();
292  G4double dum, excs = 0.0;
293  if( targetParticle.GetDefinition() == aProton )
294  {
295  G4int counter = -1;
296  for( np=0; np<numSec/3 && ran>=excs; ++np )
297  {
298  for( nneg=std::max(0,np-2); nneg<=(np+1) && ran>=excs; ++nneg )
299  {
300  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
301  {
302  if( ++counter < numMul )
303  {
304  nt = np+nneg+nz;
305  if( nt>0 && nt<=numSec )
306  {
307  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
308  dum = (pi/anpn)*nt*protmul[counter]*protnorm[nt-1]/(2.0*n*n);
309  if( std::fabs(dum) < 1.0 )
310  {
311  if( test >= 1.0e-10 )excs += dum*test;
312  }
313  else
314  excs += dum*test;
315  }
316  }
317  }
318  }
319  }
320  if( ran >= excs ) // 3 previous loops continued to the end
321  {
322  quasiElastic = true;
323  return;
324  }
325  np--; nneg--; nz--;
326  G4int ncht = std::min( 4, std::max( 1, np-nneg+2 ) );
327  switch( ncht )
328  {
329  case 1:
330  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
331  incidentHasChanged = true;
332  break;
333  case 2:
334  if( G4UniformRand() < 0.5 )
335  {
336  if( G4UniformRand() < 0.5 )
337  {
338  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
339  incidentHasChanged = true;
340  }
341  else
342  {
343  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
344  incidentHasChanged = true;
345  targetParticle.SetDefinitionAndUpdateE( aNeutron );
346  targetHasChanged = true;
347  }
348  }
349  else
350  {
351  if( G4UniformRand() >= 0.5 )
352  {
353  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
354  incidentHasChanged = true;
355  targetParticle.SetDefinitionAndUpdateE( aNeutron );
356  targetHasChanged = true;
357  }
358  }
359  break;
360  case 3:
361  if( G4UniformRand() < 0.5 )
362  {
363  if( G4UniformRand() < 0.5 )
364  {
365  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
366  incidentHasChanged = true;
367  targetParticle.SetDefinitionAndUpdateE( aNeutron );
368  targetHasChanged = true;
369  }
370  else
371  {
372  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
373  incidentHasChanged = true;
374  }
375  }
376  else
377  {
378  if( G4UniformRand() < 0.5 )
379  {
380  targetParticle.SetDefinitionAndUpdateE( aNeutron );
381  targetHasChanged = true;
382  }
383  else
384  {
385  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
386  incidentHasChanged = true;
387  }
388  }
389  break;
390  case 4:
391  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
392  incidentHasChanged = true;
393  targetParticle.SetDefinitionAndUpdateE( aNeutron );
394  targetHasChanged = true;
395  break;
396  }
397  }
398  else // target must be a neutron
399  {
400  G4int counter = -1;
401  for( np=0; np<numSec/3 && ran>=excs; ++np )
402  {
403  for( nneg=std::max(0,np-1); nneg<=(np+2) && ran>=excs; ++nneg )
404  {
405  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
406  {
407  if( ++counter < numMul )
408  {
409  nt = np+nneg+nz;
410  if( nt>0 && nt<=numSec )
411  {
412  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
413  dum = (pi/anpn)*nt*neutmul[counter]*neutnorm[nt-1]/(2.0*n*n);
414  if( std::fabs(dum) < 1.0 )
415  {
416  if( test >= 1.0e-10 )excs += dum*test;
417  }
418  else
419  excs += dum*test;
420  }
421  }
422  }
423  }
424  }
425  if( ran >= excs ) // 3 previous loops continued to the end
426  {
427  quasiElastic = true;
428  return;
429  }
430  np--; nneg--; nz--;
431  G4int ncht = std::min( 4, std::max( 1, np-nneg+3 ) );
432  switch( ncht )
433  {
434  case 1:
435  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
436  incidentHasChanged = true;
437  targetParticle.SetDefinitionAndUpdateE( aProton );
438  targetHasChanged = true;
439  break;
440  case 2:
441  if( G4UniformRand() < 0.5 )
442  {
443  if( G4UniformRand() < 0.5 )
444  {
445  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
446  incidentHasChanged = true;
447  targetParticle.SetDefinitionAndUpdateE( aProton );
448  targetHasChanged = true;
449  }
450  else
451  {
452  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
453  incidentHasChanged = true;
454  }
455  }
456  else
457  {
458  if( G4UniformRand() < 0.5 )
459  {
460  targetParticle.SetDefinitionAndUpdateE( aProton );
461  targetHasChanged = true;
462  }
463  else
464  {
465  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaMinus );
466  incidentHasChanged = true;
467  }
468  }
469  break;
470  case 3:
471  if( G4UniformRand() < 0.5 )
472  {
473  if( G4UniformRand() < 0.5 )
474  {
475  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaZero );
476  incidentHasChanged = true;
477  }
478  else
479  {
480  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
481  incidentHasChanged = true;
482  targetParticle.SetDefinitionAndUpdateE( aProton );
483  targetHasChanged = true;
484  }
485  }
486  else
487  {
488  if( G4UniformRand() >= 0.5 )
489  {
490  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
491  incidentHasChanged = true;
492  targetParticle.SetDefinitionAndUpdateE( aProton );
493  targetHasChanged = true;
494  }
495  }
496  break;
497  default:
498  currentParticle.SetDefinitionAndUpdateE( anAntiSigmaPlus );
499  incidentHasChanged = true;
500  break;
501  }
502  }
503  }
504  else // random number <= anhl[iplab]
505  {
506  if( centerofmassEnergy <= aPiPlus->GetPDGMass()/MeV+aKaonPlus->GetPDGMass()/MeV )
507  {
508  quasiElastic = true;
509  return;
510  }
511  //
512  // annihilation channels
513  //
514  G4double n, anpn;
515  GetNormalizationConstant( -centerofmassEnergy, n, anpn );
516  G4double ran = G4UniformRand();
517  G4double dum, excs = 0.0;
518  if( targetParticle.GetDefinition() == aProton )
519  {
520  G4int counter = -1;
521  for( np=1; np<numSec/3 && ran>=excs; ++np )
522  {
523  nneg = np-1;
524  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
525  {
526  if( ++counter < numMulA )
527  {
528  nt = np+nneg+nz;
529  if( nt>1 && nt<=numSec )
530  {
531  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
532  dum = (pi/anpn)*nt*protmulA[counter]*protnormA[nt-1]/(2.0*n*n);
533  if( std::fabs(dum) < 1.0 )
534  {
535  if( test >= 1.0e-10 )excs += dum*test;
536  }
537  else
538  excs += dum*test;
539  }
540  }
541  }
542  }
543  }
544  else // target must be a neutron
545  {
546  G4int counter = -1;
547  for( np=0; np<numSec/3 && ran>=excs; ++np )
548  {
549  nneg = np;
550  for( nz=0; nz<numSec/3 && ran>=excs; ++nz )
551  {
552  if( ++counter < numMulA )
553  {
554  nt = np+nneg+nz;
555  if( nt>1 && nt<=numSec )
556  {
557  test = std::exp( std::min( expxu, std::max( expxl, -(pi/4.0)*(nt*nt)/(n*n) ) ) );
558  dum = (pi/anpn)*nt*neutmulA[counter]*neutnormA[nt-1]/(2.0*n*n);
559  if( std::fabs(dum) < 1.0 )
560  {
561  if( test >= 1.0e-10 )excs += dum*test;
562  }
563  else
564  excs += dum*test;
565  }
566  }
567  }
568  }
569  }
570  if( ran >= excs ) // 3 previous loops continued to the end
571  {
572  quasiElastic = true;
573  return;
574  }
575  np--; nz--;
576  currentParticle.SetMass( 0.0 );
577  targetParticle.SetMass( 0.0 );
578  }
579  SetUpPions( np, nneg, nz, vec, vecLen );
580  if( currentParticle.GetMass() == 0.0 )
581  {
582  if( nz == 0 )
583  {
584  if( nneg > 0 )
585  {
586  for( G4int i=0; i<vecLen; ++i )
587  {
588  if( vec[i]->GetDefinition() == aPiMinus )
589  {
590  vec[i]->SetDefinitionAndUpdateE( aKaonMinus );
591  break;
592  }
593  }
594  }
595  }
596  else // nz > 0
597  {
598  if( nneg == 0 )
599  {
600  for( G4int i=0; i<vecLen; ++i )
601  {
602  if( vec[i]->GetDefinition() == aPiZero )
603  {
604  vec[i]->SetDefinitionAndUpdateE( aKaonZL );
605  break;
606  }
607  }
608  }
609  else // nneg > 0
610  {
611  if( G4UniformRand() < 0.5 )
612  {
613  if( nneg > 0 )
614  {
615  for( G4int i=0; i<vecLen; ++i )
616  {
617  if( vec[i]->GetDefinition() == aPiMinus )
618  {
619  vec[i]->SetDefinitionAndUpdateE( aKaonMinus );
620  break;
621  }
622  }
623  }
624  }
625  else // random number >= 0.5
626  {
627  for( G4int i=0; i<vecLen; ++i )
628  {
629  if( vec[i]->GetDefinition() == aPiZero )
630  {
631  vec[i]->SetDefinitionAndUpdateE( aKaonZL );
632  break;
633  }
634  }
635  }
636  }
637  }
638  }
639  return;
640 }
641 
642  /* end of file */
643 
G4double EvaporationEffects(G4double kineticEnergy)
Definition: G4Nucleus.cc:264
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double GetTotalMomentum() const
void SetUpChange(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged)
void SetKineticEnergy(const G4double en)
void SetMomentum(const G4double x, const G4double y, const G4double z)
const char * p
Definition: xmltok.h:285
const G4String & GetName() const
Definition: G4Material.hh:176
static G4KaonZeroLong * KaonZeroLong()
void SetSide(const G4int sid)
void CalculateMomenta(G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen, const G4HadProjectile *originalIncident, const G4DynamicParticle *originalTarget, G4ReactionProduct &modifiedOriginal, G4Nucleus &targetNucleus, G4ReactionProduct &currentParticle, G4ReactionProduct &targetParticle, G4bool &incidentHasChanged, G4bool &targetHasChanged, G4bool quasiElastic)
G4ParticleDefinition * GetDefinition() const
#define G4ThreadLocal
Definition: tls.hh:52
static G4AntiSigmaPlus * AntiSigmaPlus()
void Initialize(G4int items)
Definition: G4FastVector.hh:63
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:227
void SetDefinitionAndUpdateE(G4ParticleDefinition *aParticleDefinition)
const G4String & GetParticleName() const
static G4KaonMinus * KaonMinus()
Definition: G4KaonMinus.cc:113
G4ParticleDefinition * GetDefinition() const
G4double Pmltpc(G4int np, G4int nm, G4int nz, G4int n, G4double b, G4double c)
static G4AntiSigmaMinus * AntiSigmaMinus()
tuple b
Definition: test.py:12
Char_t n[5]
void SetMass(const G4double mas)
#define G4UniformRand()
Definition: Randomize.hh:87
G4GLOB_DLL std::ostream G4cout
const G4ParticleDefinition * GetDefinition() const
G4double ek
bool G4bool
Definition: G4Types.hh:79
G4double GetKineticEnergy() const
TTree * nt
Definition: plotHisto.C:21
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4PionPlus * PionPlus()
Definition: G4PionPlus.cc:98
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4PionZero * PionZero()
Definition: G4PionZero.cc:104
G4double GetPDGMass() const
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double Cinema(G4double kineticEnergy)
Definition: G4Nucleus.cc:368
static G4PionMinus * PionMinus()
Definition: G4PionMinus.cc:98
static G4AntiSigmaZero * AntiSigmaZero()
G4int first
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4ThreeVector GetMomentum() const
#define G4endl
Definition: G4ios.hh:61
const G4Material * GetMaterial() const
def test
Definition: mcscore.py:117
void GetNormalizationConstant(const G4double availableEnergy, G4double &n, G4double &anpn)
double G4double
Definition: G4Types.hh:76
static G4KaonPlus * KaonPlus()
Definition: G4KaonPlus.cc:113
tuple c
Definition: test.py:13
void SetUpPions(const G4int np, const G4int nm, const G4int nz, G4FastVector< G4ReactionProduct, 256 > &vec, G4int &vecLen)
double mag() const
G4double GetMass() const
G4double GetTotalMomentum() const
G4double GetTotalEnergy() const