33 #define INCLXX_IN_GEANT4_MODE 1
44 #ifndef G4INCLNUCLEUS_HH_
45 #define G4INCLNUCLEUS_HH_
131 for(
ParticleIter i=outgoing.begin(), e=outgoing.end(); i!=e; ++i) {
214 incomingAngularMomentum = j;
222 incomingMomentum =
p;
227 return incomingMomentum;
245 for(
ParticleIter i=inside.begin(), e=inside.end(); i!=e; ++i)
246 if((*i)->isDelta())
return true;
353 delete theProjectileRemnant;
354 theProjectileRemnant =
c;
362 delete theProjectileRemnant;
363 theProjectileRemnant = NULL;
400 void computeOneNucleonRecoilKinematics();
403 G4int theInitialZ, theInitialA;
409 ThreeVector incomingAngularMomentum, incomingMomentum;
G4int getNumberOfEnteringNeutrons() const
G4int getA() const
Returns the baryon number.
ConservationBalance getConservationBalance(EventInfo const &theEventInfo, const G4bool afterRecoil) const
Compute charge, mass, energy and momentum balance.
void initializeParticles()
G4bool containsDeltas()
Returns true if the nucleus contains any deltas.
void updatePotentialEnergy(Particle *p) const
Update the particle potential energy.
G4double getReflectionMomentum() const
Return the reflection momentum.
void setIncomingAngularMomentum(const ThreeVector &j)
Set the incoming angular-momentum vector.
void setIncomingMomentum(const ThreeVector &p)
Set the incoming momentum vector.
const G4double eSquared
Coulomb conversion factor [MeV*fm].
G4int getInitialZ() const
ParticleList const & getParticles() const
G4int getProjectileChargeNumber() const
Return the charge number of the projectile.
const ThreeVector & getIncomingMomentum() const
Get the incoming momentum vector.
G4double getFermiMomentum(const Particle *const p) const
Return the Fermi momentum for a particle.
G4bool decayOutgoingClusters()
Force the decay of unstable outgoing clusters.
void setInitialEnergy(const G4double e)
Set the initial energy.
G4bool isNucleusNucleusCollision() const
Is it a nucleus-nucleus collision?
G4int getInitialA() const
void applyFinalState(FinalState *)
void setDensity(NuclearDensity const *const d)
Setter for theDensity.
G4bool isTargetSpectator() const
const ThreeVector & getIncomingAngularMomentum() const
Get the incoming angular-momentum vector.
Class for constructing a projectile-like remnant.
void setParticleNucleusCollision()
Set a particle-nucleus collision.
G4int getProjectileMassNumber() const
Return the mass number of the projectile.
Struct for conservation laws.
G4double getSurfaceRadius(Particle const *const particle) const
Get the maximum allowed radius for a given particle.
G4bool hasRemnant() const
Does the nucleus give a cascade remnant?
Nucleus & operator=(const Nucleus &rhs)
Dummy assignment operator to silence Coverity warning.
G4double getInitialInternalEnergy() const
void useFusionKinematics()
Adjust the kinematics for complete-fusion events.
G4double getInitialEnergy() const
Get the initial energy.
G4double getSeparationEnergy(const Particle *const p) const
Return the separation energy for a particle.
G4bool decayOutgoingDeltas()
Force the decay of outgoing deltas.
ParticleList const & getOutgoingParticles() const
Simple container for output of event results.
void setDensity(NuclearDensity const *const d)
Setter for theDensity.
G4int getZ() const
Returns the charge number.
void setPotentialEnergy(G4double v)
Set the particle potential energy.
G4double computeSeparationEnergyBalance() const
Outgoing - incoming separation energies.
void setUniverseRadius(const G4double universeRadius)
Setter for theUniverseRadius.
G4double getExcitationEnergy() const
Get the excitation energy of the nucleus.
ParticleList const & getUpdatedParticles() const
G4double computeExcitationEnergy() const
Compute the current excitation energy.
G4int getNumberOfEnteringProtons() const
void deleteProjectileRemnant()
Delete the projectile remnant.
ParticleList const & getCreatedParticles() const
G4bool decayMe()
Force the phase-space decay of the Nucleus.
ParticleSampler * theParticleSampler
ThreeVector computeCenterOfMass() const
Compute the current center-of-mass position.
void incrementCascading()
G4bool getTryCompoundNucleus()
NuclearPotential::INuclearPotential const * getPotential() const
Getter for thePotential.
G4double theExcitationEnergy
void setProjectileChargeNumber(G4int n)
Set the charge number of the projectile.
void propagateParticles(G4double step)
G4bool decayInsideDeltas()
Force the decay of deltas inside the nucleus.
void finalizeProjectileRemnant(const G4double emissionTime)
Finalise the projectile remnant.
G4double getTransmissionBarrier(Particle const *const p)
Get the transmission barrier.
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
void emitInsidePions()
Force emission of all pions inside the nucleus.
G4INCL::ParticleType getType() const
NuclearDensity const * getDensity() const
Getter for theDensity.
void setProjectileRemnant(ProjectileRemnant *const c)
Set the projectile remnant.
G4bool isEventTransparent() const
Is the event transparent?
void fillEventInfo(EventInfo *eventInfo)
G4double computeTotalEnergy() const
Compute the current total energy.
ProjectileRemnant * getProjectileRemnant() const
Get the projectile remnant.
void setProjectileMassNumber(G4int n)
Set the mass number of the projectile.
G4double getUniverseRadius() const
Getter for theUniverseRadius.
void insertParticle(Particle *p)
Insert a new particle (e.g. a projectile) in the nucleus.
virtual G4double computePotentialEnergy(const Particle *const p) const =0
Nucleus(G4int mass, G4int charge, Config const *const conf, const G4double universeRadius=-1.)
G4double getTransmissionRadius(Particle const *const p) const
The radius used for calculating the transmission coefficient.
void computeRecoilKinematics()
Compute the recoil momentum and spin of the nucleus.
Particle * getBlockedDelta() const
Get the delta that could not decay.
G4bool isPion() const
Is this a pion?
void setNucleusNucleusCollision()
Set a nucleus-nucleus collision.
G4double getMaxRFromP(const ParticleType t, const G4double p) const
Get the maximum allowed radius for a given momentum.
ParticleList::const_iterator ParticleIter
void particleHasEntered(Particle *const particle)
Move a particle from incoming to inside.