Geant4
9.6.p02
|
create a cubic spline interpolation of a set of (x,y) pairsThis is one of the main reasons for c2_function objects to exist. More...
#include <c2_function.hh>
Public Member Functions | |
interpolating_function_p () | |
an empty linear-linear cubic-spline interpolating_function_p More... | |
interpolating_function_p (const c2_function_transformation< float_type > &transform) | |
an empty cubic-spline interpolating_function_p with a specific transform More... | |
interpolating_function_p < float_type > & | load (const std::vector< float_type > &x, const std::vector< float_type > &f, bool lowerSlopeNatural, float_type lowerSlope, bool upperSlopeNatural, float_type upperSlope, bool splined=true) throw (c2_exception) |
do the dirty work of constructing the spline from a function. More... | |
interpolating_function_p < float_type > & | load_pairs (std::vector< std::pair< float_type, float_type > > &data, bool lowerSlopeNatural, float_type lowerSlope, bool upperSlopeNatural, float_type upperSlope, bool splined=true) throw (c2_exception) |
do the dirty work of constructing the spline from a function. More... | |
interpolating_function_p < float_type > & | sample_function (const c2_function< float_type > &func, float_type amin, float_type amax, float_type abs_tol, float_type rel_tol, bool lowerSlopeNatural, float_type lowerSlope, bool upperSlopeNatural, float_type upperSlope) throw (c2_exception) |
do the dirty work of constructing the spline from a function. More... | |
interpolating_function_p < float_type > & | load_random_generator_function (const std::vector< float_type > &bincenters, const c2_function< float_type > &binheights) throw (c2_exception) |
initialize from a grid of points and a c2_function (un-normalized) to an interpolator which, when evaluated with a uniform random variate on [0,1] returns random numbers distributed as the input function. More... | |
interpolating_function_p < float_type > & | load_random_generator_bins (const std::vector< float_type > &bins, const std::vector< float_type > &binheights, bool splined=true) throw (c2_exception) |
initialize from a grid of points and an std::vector of probability densities (un-normalized) to an interpolator which, when evaluated with a uniform random variate on [0,1] returns random numbers distributed as the input histogram. More... | |
virtual float_type | value_with_derivatives (float_type x, float_type *yprime, float_type *yprime2) const throw (c2_exception) |
get the value and derivatives. More... | |
virtual | ~interpolating_function_p () |
destructor More... | |
virtual interpolating_function_p < float_type > & | clone () const throw (c2_exception) |
create a new, empty interpolating function of this type (virtual constructor) More... | |
void | get_data (std::vector< float_type > &xvals, std::vector< float_type > &yvals) const throw () |
retrieve copies of the x & y tables from which this was built More... | |
void | get_internal_data (std::vector< float_type > &xvals, std::vector< float_type > &yvals, std::vector< float_type > &y2vals) const |
retrieve copies of the transformed x, y and y2 tables from which this was built More... | |
void | set_lower_extrapolation (float_type bound) |
enable extrapolation of the function below the tabulated data. More... | |
void | set_upper_extrapolation (float_type bound) |
enable extrapolation of the function above the tabulated data. More... | |
interpolating_function_p < float_type > & | unary_operator (const c2_function< float_type > &source) const |
create a new interpolating_function_p which is the source function applied to every point in the interpolating tables More... | |
interpolating_function_p < float_type > & | binary_operator (const c2_function< float_type > &rhs, const c2_binary_function< float_type > *combining_stub) const |
create a new interpolating_function_p which is the parent interpolating_function_p combined with rhs using combiner at every point in the interpolating tables More... | |
interpolating_function_p < float_type > & | add_pointwise (const c2_function< float_type > &rhs) const |
produce a newly resampled interpolating_function_p which is the specified sum. More... | |
interpolating_function_p < float_type > & | subtract_pointwise (const c2_function< float_type > &rhs) const |
produce a newly resampled interpolating_function_p which is the specified difference. More... | |
interpolating_function_p < float_type > & | multiply_pointwise (const c2_function< float_type > &rhs) const |
produce a newly resampled interpolating_function_p which is the specified product. More... | |
interpolating_function_p < float_type > & | divide_pointwise (const c2_function< float_type > &rhs) const |
produce a newly resampled interpolating_function_p which is the specified ratio. More... | |
void | clone_data (const interpolating_function_p< float_type > &rhs) |
copy data from another interpolating function. This only makes sense if the source More... | |
Public Member Functions inherited from c2_function< float_type > | |
const std::string | cvs_header_vers () const |
get versioning information for the header file More... | |
const std::string | cvs_file_vers () const |
get versioning information for the source file More... | |
virtual | ~c2_function () |
destructor More... | |
float_type | operator() (float_type x) const throw (c2_exception) |
evaluate the function in the classic way, ignoring derivatives. More... | |
float_type | operator() (float_type x, float_type *yprime, float_type *yprime2) const throw (c2_exception) |
get the value and derivatives. More... | |
float_type | find_root (float_type lower_bracket, float_type upper_bracket, float_type start, float_type value, int *error=0, float_type *final_yprime=0, float_type *final_yprime2=0) const throw (c2_exception) |
solve f(x)==value very efficiently, with explicit knowledge of derivatives of the function More... | |
float_type | partial_integrals (std::vector< float_type > xgrid, std::vector< float_type > *partials=0, float_type abs_tol=1e-12, float_type rel_tol=1e-12, int derivs=2, bool adapt=true, bool extrapolate=true) const throw (c2_exception) |
for points in xgrid, adaptively return Integral[f(x),{x,xgrid[i],xgrid[i+1]}] and return in vector, along with sum More... | |
float_type | integral (float_type amin, float_type amax, std::vector< float_type > *partials=0, float_type abs_tol=1e-12, float_type rel_tol=1e-12, int derivs=2, bool adapt=true, bool extrapolate=true) const throw (c2_exception) |
a fully-automated integrator which uses the information provided by the get_sampling_grid() function to figure out what to do. More... | |
c2_piecewise_function_p < float_type > * | adaptively_sample (float_type amin, float_type amax, float_type abs_tol=1e-12, float_type rel_tol=1e-12, int derivs=2, std::vector< float_type > *xvals=0, std::vector< float_type > *yvals=0) const throw (c2_exception) |
create a c2_piecewise_function_p from c2_connector_function_p segments which is a representation of the parent function to the specified accuracy, but maybe much cheaper to evaluate More... | |
float_type | xmin () const |
return the lower bound of the domain for this function as set by set_domain() More... | |
float_type | xmax () const |
return the upper bound of the domain for this function as set by set_domain() More... | |
void | set_domain (float_type amin, float_type amax) |
set the domain for this function. More... | |
size_t | get_evaluations () const |
this is a counter owned by the function but which can be used to monitor efficiency of algorithms. More... | |
void | reset_evaluations () const |
reset the counter More... | |
void | increment_evaluations () const |
count evaluations More... | |
bool | check_monotonicity (const std::vector< float_type > &data, const char message[]) const throw (c2_exception) |
check that a vector is monotonic, throw an exception if not, and return a flag if it is reversed More... | |
virtual void | set_sampling_grid (const std::vector< float_type > &grid) throw (c2_exception) |
establish a grid of 'interesting' points on the function. More... | |
std::vector< float_type > * | get_sampling_grid_pointer () const |
get the sampling grid, which may be a null pointer More... | |
virtual void | get_sampling_grid (float_type amin, float_type amax, std::vector< float_type > &grid) const |
return the grid of 'interesting' points along this function which lie in the region requested More... | |
void | preen_sampling_grid (std::vector< float_type > *result) const |
clean up endpoints on a grid of points More... | |
void | refine_sampling_grid (std::vector< float_type > &grid, size_t refinement) const |
refine a grid by splitting each interval into more intervals More... | |
c2_function< float_type > & | normalized_function (float_type amin, float_type amax, float_type norm=1.0) const throw (c2_exception) |
create a new c2_function from this one which is normalized on the interval More... | |
c2_function< float_type > & | square_normalized_function (float_type amin, float_type amax, float_type norm=1.0) const throw (c2_exception) |
create a new c2_function from this one which is square-normalized on the interval More... | |
c2_function< float_type > & | square_normalized_function (float_type amin, float_type amax, const c2_function< float_type > &weight, float_type norm=1.0) const throw (c2_exception) |
create a new c2_function from this one which is square-normalized with the provided weight on the interval More... | |
c2_sum_p< float_type > & | operator+ (const c2_function< float_type > &rhs) const |
factory function to create a c2_sum_p from a regular algebraic expression. More... | |
c2_diff_p< float_type > & | operator- (const c2_function< float_type > &rhs) const |
factory function to create a c2_diff_p from a regular algebraic expression. More... | |
c2_product_p< float_type > & | operator* (const c2_function< float_type > &rhs) const |
factory function to create a c2_product_p from a regular algebraic expression. More... | |
c2_ratio_p< float_type > & | operator/ (const c2_function< float_type > &rhs) const |
factory function to create a c2_ratio_p from a regular algebraic expression. More... | |
c2_composed_function_p < float_type > & | operator() (const c2_function< float_type > &inner) const |
compose this function outside another. More... | |
float_type | get_trouble_point () const |
Find out where a calculation ran into trouble, if it got a nan. If the most recent computation did not return a nan, this is undefined. More... | |
void | claim_ownership () const |
increment our reference count. Destruction is only legal if the count is zero. More... | |
size_t | release_ownership_for_return () const throw (c2_exception) |
decrement our reference count. Do not destroy at zero. More... | |
void | release_ownership () const throw (c2_exception) |
decrement our reference count. If the count reaches zero, destroy ourself. More... | |
size_t | count_owners () const |
get the reference count, mostly for debugging More... | |
void | fill_fblock (c2_fblock< float_type > &fb) const throw (c2_exception) |
fill in a c2_fblock<float_type>... a shortcut for the integrator & sampler More... | |
Public Attributes | |
const c2_function_transformation < float_type > & | fTransform |
Protected Member Functions | |
void | spline (bool lowerSlopeNatural, float_type lowerSlope, bool upperSlopeNatural, float_type upperSlope) throw (c2_exception) |
create the spline coefficients More... | |
Protected Member Functions inherited from c2_function< float_type > | |
c2_function (const c2_function< float_type > &src) | |
c2_function () | |
virtual void | set_sampling_grid_pointer (std::vector< float_type > &grid) |
Static Protected Member Functions | |
static bool | comp_pair (std::pair< float_type, float_type > const &i, std::pair< float_type, float_type > const &j) |
Protected Attributes | |
std::vector< float_type > | Xraw |
std::vector< float_type > | X |
std::vector< float_type > | F |
std::vector< float_type > | y2 |
c2_const_ptr< float_type > | sampler_function |
bool | xInverted |
size_t | lastKLow |
Protected Attributes inherited from c2_function< float_type > | |
std::vector< float_type > * | sampling_grid |
bool | no_overwrite_grid |
float_type | fXMin |
float_type | fXMax |
size_t | evaluations |
float_type | bad_x_point |
this point may be used to record where a calculation ran into trouble More... | |
create a cubic spline interpolation of a set of (x,y) pairs
This is one of the main reasons for c2_function objects to exist.
It provides support for cubic spline interpolation of data provides from tables of x, y pairs. It supports automatic, transparent linearization of the data before storing in its tables (through subclasses such as log_lin_interpolating_function, lin_log_interpolating_function, and log_log_interpolating_function) to permit very high accuracy representations of data which have a suitable structure. It provides utility functions LinearInterpolatingGrid() and LogLogInterpolatingGrid() to create grids for mapping other functions onto a arithmetic or geometric grid.
In its simplest form, an untransformed cubic spline of a data set, using natural boundary conditions (vanishing second derivative), is created as:
The factory function c2_factory::interpolating_function() creates *new interpolating_function_p()
Definition at line 1377 of file c2_function.hh.
|
inline |
an empty linear-linear cubic-spline interpolating_function_p
lots to say here, but see Numerical Recipes for a discussion of cubic splines.
Definition at line 1383 of file c2_function.hh.
|
inline |
an empty cubic-spline interpolating_function_p with a specific transform
Definition at line 1388 of file c2_function.hh.
|
inlinevirtual |
destructor
Definition at line 1485 of file c2_function.hh.
|
inline |
produce a newly resampled interpolating_function_p which is the specified sum.
rhs | the function to add, pointwise |
Definition at line 1548 of file c2_function.hh.
interpolating_function_p<float_type>& interpolating_function_p< float_type >::binary_operator | ( | const c2_function< float_type > & | rhs, |
const c2_binary_function< float_type > * | combining_stub | ||
) | const |
create a new interpolating_function_p which is the parent interpolating_function_p combined with rhs using combiner at every point in the interpolating tables
This carefully manages the derivative of the composed function at the two ends.
rhs | the function to apply |
combining_stub | a function which defines which binary operation to use. |
|
inlinevirtual |
create a new, empty interpolating function of this type (virtual constructor)
Reimplemented in arrhenius_interpolating_function_p< float_type >, log_log_interpolating_function_p< float_type >, lin_log_interpolating_function_p< float_type >, and log_lin_interpolating_function_p< float_type >.
Definition at line 1488 of file c2_function.hh.
|
inline |
copy data from another interpolating function. This only makes sense if the source
function has the same transforms as the destination.
rhs | interpolating_function_p to copy from |
Definition at line 1568 of file c2_function.hh.
|
inlinestaticprotected |
Definition at line 1583 of file c2_function.hh.
|
inline |
produce a newly resampled interpolating_function_p which is the specified ratio.
rhs | the function to divide, pointwise |
Definition at line 1563 of file c2_function.hh.
void interpolating_function_p< float_type >::get_data | ( | std::vector< float_type > & | xvals, |
std::vector< float_type > & | yvals | ||
) | const | ||
throw | ( | ||
) |
retrieve copies of the x & y tables from which this was built
This is often useful in the creation of new interpolating functions with transformed data. The vectors will have their sizes set correctly on return.
[in,out] | xvals | the abscissas |
[in,out] | yvals | the ordinates |
|
inline |
retrieve copies of the transformed x, y and y2 tables from which this was built
The vectors will have their sizes set correctly on return.
[in,out] | xvals | the transformed abscissas |
[in,out] | yvals | the transformed ordinates |
[in,out] | y2vals | the second derivatives |
Definition at line 1505 of file c2_function.hh.
interpolating_function_p<float_type>& interpolating_function_p< float_type >::load | ( | const std::vector< float_type > & | x, |
const std::vector< float_type > & | f, | ||
bool | lowerSlopeNatural, | ||
float_type | lowerSlope, | ||
bool | upperSlopeNatural, | ||
float_type | upperSlope, | ||
bool | splined = true |
||
) | |||
throw | ( | c2_exception | |
) |
do the dirty work of constructing the spline from a function.
x | the list of abscissas. Must be either strictly increasing or strictly decreasing. Strictly increasing is preferred, as less memory is used since a copy is not required for the sampling grid. |
f | the list of function values. |
lowerSlopeNatural | if true, set y''(first point)=0, otherwise compute it from lowerSope |
lowerSlope | derivative of the function at the lower bound, used only if lowerSlopeNatural is false |
upperSlopeNatural | if true, set y''(last point)=0, otherwise compute it from upperSope |
upperSlope | derivative of the function at the upper bound, used only if upperSlopeNatural is false |
splined | if true (default), use cubic spline, if false, use linear interpolation. |
interpolating_function_p<float_type>& interpolating_function_p< float_type >::load_pairs | ( | std::vector< std::pair< float_type, float_type > > & | data, |
bool | lowerSlopeNatural, | ||
float_type | lowerSlope, | ||
bool | upperSlopeNatural, | ||
float_type | upperSlope, | ||
bool | splined = true |
||
) | |||
throw | ( | c2_exception | |
) |
do the dirty work of constructing the spline from a function.
data | std::vector of std::pairs of x,y. Will be sorted into x increasing order in place. |
lowerSlopeNatural | if true, set y''(first point)=0, otherwise compute it from lowerSope |
lowerSlope | derivative of the function at the lower bound, used only if lowerSlopeNatural is false |
upperSlopeNatural | if true, set y''(last point)=0, otherwise compute it from upperSope |
upperSlope | derivative of the function at the upper bound, used only if upperSlopeNatural is false |
splined | if true (default), use cubic spline, if false, use linear interpolation. |
interpolating_function_p<float_type>& interpolating_function_p< float_type >::load_random_generator_bins | ( | const std::vector< float_type > & | bins, |
const std::vector< float_type > & | binheights, | ||
bool | splined = true |
||
) | |||
throw | ( | c2_exception | |
) |
initialize from a grid of points and an std::vector of probability densities (un-normalized) to an interpolator which, when evaluated with a uniform random variate on [0,1] returns random numbers distributed as the input histogram.
bins | if bins .size()==binheights .size(), the centers of the bins. if bins .size()==binheights .size()+1, the edges of the bins |
binheights | a vector which describes the density of the random number distribution to be produced. Note density... the numbers in the bins are not counts, but counts/unit bin width. |
splined | if true (default), use cubic spline, if false, use linear interpolation. This can often be used to fix ringing if there are very sharp features in the generator. |
interpolating_function_p<float_type>& interpolating_function_p< float_type >::load_random_generator_function | ( | const std::vector< float_type > & | bincenters, |
const c2_function< float_type > & | binheights | ||
) | |||
throw | ( | c2_exception | |
) |
initialize from a grid of points and a c2_function (un-normalized) to an interpolator which, when evaluated with a uniform random variate on [0,1] returns random numbers distributed as the input function.
bincenters | the positions at which to sample the function binheights |
binheights | a function which describes the density of the random number distribution to be produced. |
|
inline |
produce a newly resampled interpolating_function_p which is the specified product.
rhs | the function to multiply, pointwise |
Definition at line 1558 of file c2_function.hh.
interpolating_function_p<float_type>& interpolating_function_p< float_type >::sample_function | ( | const c2_function< float_type > & | func, |
float_type | amin, | ||
float_type | amax, | ||
float_type | abs_tol, | ||
float_type | rel_tol, | ||
bool | lowerSlopeNatural, | ||
float_type | lowerSlope, | ||
bool | upperSlopeNatural, | ||
float_type | upperSlope | ||
) | |||
throw | ( | c2_exception | |
) |
do the dirty work of constructing the spline from a function.
func | a function without any requirement of valid derivatives to sample into an interpolating function. Very probably a c2_classic_function. |
amin | the lower bound of the region to sample |
amax | the upper bound of the region to sample |
abs_tol | the maximum absolute error permitted when linearly interpolating the points. the real error will be much smaller, since this uses cubic splines at the end. |
rel_tol | the maximum relative error permitted when linearly interpolating the points. the real error will be much smaller, since this uses cubic splines at the end. |
lowerSlopeNatural | if true, set y'(first point) from 3-point parabola, otherwise compute it from lowerSope |
lowerSlope | derivative of the function at the lower bound, used only if lowerSlopeNatural is false |
upperSlopeNatural | if true, set y'(last point) from 3-point parabola, otherwise compute it from upperSope |
upperSlope | derivative of the function at the upper bound, used only if upperSlopeNatural is false |
void interpolating_function_p< float_type >::set_lower_extrapolation | ( | float_type | bound) |
enable extrapolation of the function below the tabulated data.
This allows the interpolator to be extrapolated outside the bounds of the data, using whatever derivatives it already had at the lower bound.
bound | the abscissa to which the function should be extended. |
void interpolating_function_p< float_type >::set_upper_extrapolation | ( | float_type | bound) |
enable extrapolation of the function above the tabulated data.
This allows the interpolator to be extrapolated outside the bounds of the data, using whatever derivatives it already had at the upper bound.
bound | the abscissa to which the function should be extended. |
|
protected |
create the spline coefficients
|
inline |
produce a newly resampled interpolating_function_p which is the specified difference.
rhs | the function to subtract, pointwise |
Definition at line 1553 of file c2_function.hh.
interpolating_function_p<float_type>& interpolating_function_p< float_type >::unary_operator | ( | const c2_function< float_type > & | source) | const |
create a new interpolating_function_p which is the source function applied to every point in the interpolating tables
This carefully manages the derivative of the composed function at the two ends.
source | the function to apply |
|
virtual |
get the value and derivatives.
There is required checking for null pointers on the derivatives, and most implementations should operate faster if derivatives are not needed.
[in] | x | the point at which to evaluate the function |
[out] | yprime | the first derivative (if pointer is non-null) |
[out] | yprime2 | the second derivative (if pointer is non-null) |
Implements c2_function< float_type >.
|
protected |
Definition at line 1585 of file c2_function.hh.
const c2_function_transformation<float_type>& interpolating_function_p< float_type >::fTransform |
Definition at line 1573 of file c2_function.hh.
|
mutableprotected |
Definition at line 1588 of file c2_function.hh.
|
protected |
Definition at line 1586 of file c2_function.hh.
|
protected |
Definition at line 1585 of file c2_function.hh.
|
protected |
Definition at line 1587 of file c2_function.hh.
|
protected |
Definition at line 1585 of file c2_function.hh.
|
protected |
Definition at line 1585 of file c2_function.hh.