Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4QIonIonElastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // ---------------- G4QIonIonElastic class -----------------
29 // by Mikhail Kossov, December 2006.
30 // G4QIonIonElastic class of the CHIPS Simulation Branch in GEANT4
31 // ---------------------------------------------------------------
32 // ****************************************************************************************
33 // ********** This CLASS is temporary moved from the photolepton_hadron directory *********
34 // ****************************************************************************************
35 // Short description: a simple process for the Ion-Ion elastic scattering.
36 // For heavy by heavy ions it can reach 50% of the total cross-section.
37 // -----------------------------------------------------------------------
38 
39 //#define debug
40 //#define pdebug
41 //#define tdebug
42 //#define nandebug
43 //#define ppdebug
44 
45 #include "G4QIonIonElastic.hh"
46 #include "G4SystemOfUnits.hh"
47 #include "G4HadronicDeprecate.hh"
48 
49 
50 // Initialization of static vectors
51 //G4int G4QIonIonElastic::nPartCWorld=152; // The#of particles initialized in CHIPS World
52 //G4int G4QIonIonElastic::nPartCWorld=122; // The#of particles initialized in CHIPS World
53 G4int G4QIonIonElastic::nPartCWorld=85; // The#of particles initialized in CHIPS World Red.
54 std::vector<G4int> G4QIonIonElastic::ElementZ; // Z of the element(i) in theLastCalc
55 std::vector<G4double> G4QIonIonElastic::ElProbInMat; // SumProbabilityElements in Material
56 std::vector<std::vector<G4int>*> G4QIonIonElastic::ElIsoN; // N of isotope(j) of Element(i)
57 std::vector<std::vector<G4double>*>G4QIonIonElastic::IsoProbInEl;//SumProbabIsotopes in ElI
58 
59 // Constructor
61  G4VDiscreteProcess(processName, fHadronic)
62 {
63  G4HadronicDeprecate("G4QIonIonElastic");
64 
65 #ifdef debug
66  G4cout<<"G4QIonIonElastic::Constructor is called processName="<<processName<<G4endl;
67 #endif
68  if (verboseLevel>0) G4cout << GetProcessName() << " process is created "<< G4endl;
69  //G4QCHIPSWorld::Get()->GetParticles(nPartCWorld); // Create CHIPS World (234 part. max)
70 }
71 
72 // Destructor
74 
75 // output of the function must be in units of length! L=1/sig_V,sig_V=SUM(n(j,i)*sig(j,i)),
76 // where n(i,j) is a number of nuclei of the isotop j of the element i in V=1(lengtUnit^3)
77 // ********** All CHIPS cross sections are calculated in the surface units ************
79  G4ForceCondition* Fc)
80 {
81  static const G4double mProt = G4QPDGCode(2212).GetMass()/MeV;// CHIPS proton Mass in MeV
82  *Fc = NotForced;
83  const G4DynamicParticle* incidentParticle = aTrack.GetDynamicParticle();
84  G4ParticleDefinition* incidentParticleDefinition=incidentParticle->GetDefinition();
85  if( !IsApplicable(*incidentParticleDefinition))
86  G4cout<<"-Warning-G4QIonIonElastic::GetMeanFreePath: notImplementedParticle"<<G4endl;
87  // Calculate the mean Cross Section for the set of Elements(*Isotopes) in the Material
88  G4double Momentum = incidentParticle->GetTotalMomentum(); // 3-momentum of the Particle
89 #ifdef debug
90  G4double KinEn = incidentParticle->GetKineticEnergy();
91  G4cout<<"G4QIonIonElastic::GetMeanFreePath: kinE="<<KinEn<<",Mom="<<Momentum<<G4endl;
92 #endif
93  const G4Material* material = aTrack.GetMaterial(); // Get the current material
94  const G4double* NOfNucPerVolume = material->GetVecNbOfAtomsPerVolume();
95  const G4ElementVector* theElementVector = material->GetElementVector();
96  G4int nE=material->GetNumberOfElements();
97 #ifdef debug
98  G4cout<<"G4QIonIonElastic::GetMeanFreePath:"<<nE<<" Elem's in theMaterial"<<G4endl;
99 #endif
102  G4int pPDG=0;
103  // Probably enough: pPDG=incidentParticleDefinition->GetPDGEncoding();
104  G4int pZ=static_cast<G4int>(incidentParticleDefinition->GetPDGCharge());
105  G4int pA=incidentParticleDefinition->GetBaryonNumber();
106  if (incidentParticleDefinition == G4Deuteron::Deuteron() ) pPDG = 1000010020;
107  else if (incidentParticleDefinition == G4Alpha::Alpha() ) pPDG = 1000020040;
108  else if (incidentParticleDefinition == G4Triton::Triton() ) pPDG = 1000010030;
109  else if (incidentParticleDefinition == G4He3::He3() ) pPDG = 1000020030;
110  else if (incidentParticleDefinition == G4GenericIon::GenericIon() || (pZ > 0 && pA > 0))
111  {
112  pPDG=incidentParticleDefinition->GetPDGEncoding();
113 #ifdef debug
114  G4int prPDG=1000000000+10000*pZ+10*pA;
115  G4cout<<"G4QIonIonElastic::GetMeanFreePath: PDG="<<prPDG<<"="<<pPDG<<G4endl;
116 #endif
117  }
118  else G4cout<<"-Warning-G4QIonIonElastic::GetMeanFreePath:Unknown projectile Ion"<<G4endl;
119  Momentum/=incidentParticleDefinition->GetBaryonNumber(); // Divide Mom by projectile A
120  G4QIsotope* Isotopes = G4QIsotope::Get(); // Pointer to the G4QIsotopes singleton
121  G4double sigma=0.; // Sums over elements for the material
122  G4int IPIE=IsoProbInEl.size(); // How many old elements?
123  if(IPIE) for(G4int ip=0; ip<IPIE; ++ip) // Clean up the SumProb's of Isotopes (SPI)
124  {
125  std::vector<G4double>* SPI=IsoProbInEl[ip]; // Pointer to the SPI vector
126  SPI->clear();
127  delete SPI;
128  std::vector<G4int>* IsN=ElIsoN[ip]; // Pointer to the N vector
129  IsN->clear();
130  delete IsN;
131  }
132  ElProbInMat.clear(); // Clean up the SumProb's of Elements (SPE)
133  ElementZ.clear(); // Clear the body vector for Z of Elements
134  IsoProbInEl.clear(); // Clear the body vector for SPI
135  ElIsoN.clear(); // Clear the body vector for N of Isotopes
136  for(G4int i=0; i<nE; ++i)
137  {
138  G4Element* pElement=(*theElementVector)[i]; // Pointer to the current element
139  G4int Z = static_cast<G4int>(pElement->GetZ()); // Z of the Element
140  ElementZ.push_back(Z); // Remember Z of the Element
141  G4int isoSize=0; // The default for the isoVectorLength is 0
142  G4int indEl=0; // Index of non-natural element or 0(default)
143  G4IsotopeVector* isoVector=pElement->GetIsotopeVector(); // Get the predefined IsoVect
144  if(isoVector) isoSize=isoVector->size();// Get size of the existing isotopeVector
145 #ifdef debug
146  G4cout<<"G4QIonIonElastic::GetMeanFreePath: isovectorLength="<<isoSize<<G4endl;
147 #endif
148  if(isoSize) // The Element has non-trivial abundance set
149  {
150  indEl=pElement->GetIndex()+1; // Index of the non-trivial element is an order
151 #ifdef debug
152  G4cout<<"G4QIIEl::GetMFP:iE="<<indEl<<", def="<<Isotopes->IsDefined(Z,indEl)<<G4endl;
153 #endif
154  if(!Isotopes->IsDefined(Z,indEl)) // This index is not defined for this Z: define
155  {
156  std::vector<std::pair<G4int,G4double>*>* newAbund =
157  new std::vector<std::pair<G4int,G4double>*>;
158  G4double* abuVector=pElement->GetRelativeAbundanceVector();
159  for(G4int j=0; j<isoSize; j++) // Calculation of abundance vector for isotopes
160  {
161  G4int N=pElement->GetIsotope(j)->GetN()-Z; // N means A=N+Z !
162  if(pElement->GetIsotope(j)->GetZ()!=Z) G4cerr<<"G4QIonIonEl::GetMeanFreePath Z="
163  <<pElement->GetIsotope(j)->GetZ()<<"#"<<Z<<G4endl;
164  G4double abund=abuVector[j];
165  std::pair<G4int,G4double>* pr= new std::pair<G4int,G4double>(N,abund);
166 #ifdef debug
167  G4cout<<"G4QIonIonElastic::GetMeanFP:pair#="<<j<<",N="<<N<<",ab="<<abund<<G4endl;
168 #endif
169  newAbund->push_back(pr);
170  }
171 #ifdef debug
172  G4cout<<"G4QIonIonElastic::GetMeanFP: pairVectorLength="<<newAbund->size()<<G4endl;
173 #endif
174  indEl=G4QIsotope::Get()->InitElement(Z,indEl,newAbund); // definition of the newInd
175  for(G4int k=0; k<isoSize; k++) delete (*newAbund)[k]; // Cleaning temporary
176  delete newAbund; // Was "new" in the beginning of the name space
177  }
178  }
179  std::vector<std::pair<G4int,G4double>*>* cs= Isotopes->GetCSVector(Z,indEl);//CSPointer
180  std::vector<G4double>* SPI = new std::vector<G4double>; // Pointer to the SPI vector
181  IsoProbInEl.push_back(SPI);
182  std::vector<G4int>* IsN = new std::vector<G4int>; // Pointer to the N vector
183  ElIsoN.push_back(IsN);
184  G4int nIs=cs->size(); // A#Of Isotopes in the Element
185 #ifdef debug
186  G4cout<<"G4QIonIonEl::GetMFP:=***=> #isot="<<nIs<<", Z="<<Z<<", indEl="<<indEl<<G4endl;
187 #endif
188  G4double susi=0.; // sum of CS over isotopes
189  if(nIs) for(G4int j=0; j<nIs; j++) // Calculate CS for eachIsotope of El
190  {
191  std::pair<G4int,G4double>* curIs=(*cs)[j]; // A pointer, which is used twice
192  G4int N=curIs->first; // #of Neuterons in the isotope j of El i
193  IsN->push_back(N); // Remember Min N for the Element
194 #ifdef debug
195  G4cout<<"G4QIIE::GMFP:true,P="<<Momentum<<",Z="<<Z<<",N="<<N<<",pPDG="<<pPDG<<G4endl;
196 #endif
197  G4bool ccsf=false; // Extract elastic Ion-Ion cross-section
198 #ifdef debug
199  G4cout<<"G4QIonIonElastic::GMFP: GetCS #1 j="<<j<<G4endl;
200 #endif
201  G4double CSI=0.;
202  if(Z==1 && !N) // Proton target. Reversed kinematics.
203  {
204  G4double projM=G4QPDGCode(2212).GetNuclMass(pZ,pA-pZ,0); // Mass of the projNucleus
205  CSI=PCSmanager->GetCrossSection(true, Momentum*mProt/projM, Z, N, 2212); // Ap CS
206  }
207  else CSI=CSmanager->GetCrossSection(ccsf,Momentum,Z,N,pPDG); // CS(j,i) for isotope
208 #ifdef debug
209  G4cout<<"G4QIonIonElastic::GMFP: jI="<<j<<", Zt="<<Z<<", Nt="<<N<<", Mom="<<Momentum
210  <<", XSec="<<CSI/millibarn<<G4endl;
211 #endif
212  curIs->second = CSI;
213  susi+=CSI; // Make a sum per isotopes
214  SPI->push_back(susi); // Remember summed cross-section
215  } // End of temporary initialization of the cross sections in the G4QIsotope singeltone
216  sigma+=Isotopes->GetMeanCrossSection(Z,indEl)*NOfNucPerVolume[i];//SUM(MeanCS*NOfNperV)
217 #ifdef debug
218  G4cout<<"G4QIonIonEl::GMFP:<S>="<<Isotopes->GetMeanCrossSection(Z,indEl)<<",AddToSig="
219  <<Isotopes->GetMeanCrossSection(Z,indEl)*NOfNucPerVolume[i]<<G4endl;
220 #endif
221  ElProbInMat.push_back(sigma);
222  } // End of LOOP over Elements
223  // Check that cross section is not zero and return the mean free path
224 #ifdef debug
225  G4cout<<"G4QIonIonElastic::GetMeanFreePath: MeanFreePath="<<1./sigma<<G4endl;
226 #endif
227  if(sigma > 0.00000000001) return 1./sigma; // Mean path [distance]
228  return DBL_MAX;
229 }
230 
231 
233 {
234  G4int Z=static_cast<G4int>(particle.GetPDGCharge());
235  G4int A=particle.GetBaryonNumber();
236  if (particle == *( G4Deuteron::Deuteron() )) return true;
237  else if (particle == *( G4Alpha::Alpha() )) return true;
238  else if (particle == *( G4Triton::Triton() )) return true;
239  else if (particle == *( G4He3::He3() )) return true;
240  else if (particle == *( G4GenericIon::GenericIon() )) return true;
241  else if (Z > 0 && A > 0) return true;
242 #ifdef debug
243  G4cout<<"***>>G4QIonIonElastic::IsApplicable: PDG="<<particle.GetPDGEncoding()<<", A="
244  <<A<<", Z="<<Z<<G4endl;
245 #endif
246  return false;
247 }
248 
250 {
251  static const G4double mProt= G4QPDGCode(2212).GetMass(); // CHIPS proton mass in MeV
252  static const G4double fm2MeV2 = 3*38938./1.09; // (3/1.09)*(hc)^2 in fm^2*MeV^2
253  static G4bool CWinit = true; // CHIPS Warld needs to be initted
254  if(CWinit)
255  {
256  CWinit=false;
257  G4QCHIPSWorld::Get()->GetParticles(nPartCWorld); // Create CHIPS World (234 part.max)
258  }
259  //-------------------------------------------------------------------------------------
260  const G4DynamicParticle* projHadron = track.GetDynamicParticle();
261  const G4ParticleDefinition* particle=projHadron->GetDefinition();
262 #ifdef debug
263  G4cout<<"G4QIonIonElastic::PostStepDoIt: Before the GetMeanFreePath is called In4M="
264  <<projHadron->Get4Momentum()<<" of PDG="<<particle->GetPDGEncoding()<<", Type="
265  <<particle->GetParticleType()<<", Subtp="<<particle->GetParticleSubType()<<G4endl;
266 #endif
267  G4LorentzVector proj4M=(projHadron->Get4Momentum())/MeV; // Convert to MeV!
268  G4double momentum = projHadron->GetTotalMomentum()/MeV; // 3-momentum of the Proj in MeV
269  G4double Momentum = proj4M.rho(); // @@ Just for the test purposes
270  if(std::fabs(Momentum-momentum)>.000001)
271  G4cerr<<"-Warn-G4QIonIonElastic::PostStepDoIt:P(IU)="<<Momentum<<"#"<<momentum<<G4endl;
272  G4double pM2=proj4M.m2(); // in MeV^2
273  G4double pM=std::sqrt(pM2); // in MeV
274 #ifdef pdebug
275  G4cout<<"G4QIonIonEl::PostStepDoIt: pP(IU)="<<Momentum<<"="<<momentum<<",pM="<<pM<<G4endl;
276 #endif
277  if (!IsApplicable(*particle)) // Check applicability
278  {
279  G4cerr<<"G4QIonIonElastic::PostStepDoIt: Only NA elastic is implemented."<<G4endl;
280  return 0;
281  }
282  const G4Material* material = track.GetMaterial(); // Get the current material
283  const G4ElementVector* theElementVector = material->GetElementVector();
284  G4int nE=material->GetNumberOfElements();
285 #ifdef debug
286  G4cout<<"G4QIonIonElastic::PostStepDoIt: "<<nE<<" elements in the material."<<G4endl;
287 #endif
288  // Probably enough: projPDG=particle->GetPDGEncoding();
289  G4int projPDG=0; // CHIPS PDG Code for the captured hadron
290  G4int pZ=static_cast<G4int>(particle->GetPDGCharge());
291  G4int pA=particle->GetBaryonNumber();
292  if (particle == G4Deuteron::Deuteron() ) projPDG= 1000010020;
293  else if (particle == G4Alpha::Alpha() ) projPDG= 1000020040;
294  else if (particle == G4Triton::Triton() ) projPDG= 1000010030;
295  else if (particle == G4He3::He3() ) projPDG= 1000020030;
296  else if (particle == G4GenericIon::GenericIon() || (pZ > 0 && pA > 0))
297  {
298  projPDG=particle->GetPDGEncoding();
299 #ifdef debug
300  G4int prPDG=1000000000+10000*pZ+10*pA;
301  G4cout<<"G4QIonIonElastic::PostStepDoIt: PDG="<<prPDG<<"="<<projPDG<<G4endl;
302 #endif
303  }
304  else G4cout<<"-Warning-G4QIonIonElastic::PostStepDoIt:Unknown projectile Ion"<<G4endl;
305 #ifdef debug
306  G4int prPDG=particle->GetPDGEncoding();
307  G4cout<<"G4QIonIonElastic::PostStepDoIt: projPDG="<<projPDG<<", stPDG="<<prPDG<<G4endl;
308 #endif
309  if(!projPDG)
310  {
311  G4cerr<<"-Warning-G4QIonIonElastic::PostStepDoIt:Undefined interactingNucleus"<<G4endl;
312  return 0;
313  }
314  G4int pN=pA-pZ; // Projectile N
315  G4int EPIM=ElProbInMat.size();
316 #ifdef debug
317  G4cout<<"G4QIonIonElastic::PSDI:m="<<EPIM<<",n="<<nE<<",T="<<ElProbInMat[EPIM-1]<<G4endl;
318 #endif
319  G4int i=0;
320  if(EPIM>1)
321  {
322  G4double rnd = ElProbInMat[EPIM-1]*G4UniformRand();
323  for(i=0; i<nE; ++i)
324  {
325 #ifdef debug
326  G4cout<<"G4QIonIonElastic::PSDI: EPM["<<i<<"]="<<ElProbInMat[i]<<", r="<<rnd<<G4endl;
327 #endif
328  if (rnd<ElProbInMat[i]) break;
329  }
330  if(i>=nE) i=nE-1; // Top limit for the Element
331  }
332  G4Element* pElement=(*theElementVector)[i];
333  G4int tZ=static_cast<G4int>(pElement->GetZ());
334 #ifdef debug
335  G4cout<<"G4QIonIonElastic::PostStepDoIt: i="<<i<<", Z(element)="<<tZ<<G4endl;
336 #endif
337  if(tZ<=0)
338  {
339  G4cerr<<"---Warning---G4QIonIonElastic::PostStepDoIt: Element with Z="<<tZ<<G4endl;
340  if(tZ<0) return 0;
341  }
342  std::vector<G4double>* SPI = IsoProbInEl[i];// Vector of summedProbabilities for isotopes
343  std::vector<G4int>* IsN = ElIsoN[i]; // Vector of "#of neutrons" in the isotope El[i]
344  G4int nofIsot=SPI->size(); // #of isotopes in the element i
345 #ifdef debug
346  G4cout<<"G4QIonIonElastic::PosStDoIt: nI="<<nofIsot<<",T="<<(*SPI)[nofIsot-1]<<G4endl;
347 #endif
348  G4int j=0;
349  if(nofIsot>1)
350  {
351  G4double rndI=(*SPI)[nofIsot-1]*G4UniformRand(); // Randomize the isotop of the Element
352  for(j=0; j<nofIsot; ++j)
353  {
354 #ifdef debug
355  G4cout<<"G4QIonIonElastic::PostStDI: SP["<<j<<"]="<<(*SPI)[j]<<", r="<<rndI<<G4endl;
356 #endif
357  if(rndI < (*SPI)[j]) break;
358  }
359  if(j>=nofIsot) j=nofIsot-1; // Top limit for the isotope
360  }
361  G4int tN =(*IsN)[j]; ; // Randomized number of neutrons
362 #ifdef debug
363  G4cout<<"G4QIonIonElastic::PostStepDoIt:j="<<i<<",N(isotope)="<<tN<<",MeV="<<MeV<<G4endl;
364 #endif
365  if(tN<0)
366  {
367  G4cerr<<"-Warning-G4QIonIonElastic::PostStepDoIt:IsotopeZ="<<tZ<<" & 0>N="<<tN<<G4endl;
368  return 0;
369  }
370  nOfNeutrons=tN; // Remember it for the energy-momentum check
371 #ifdef debug
372  G4cout<<"G4QIonIonElastic::PostStepDoIt: N="<<tN<<" for element with Z="<<tZ<<G4endl;
373 #endif
375 #ifdef debug
376  G4cout<<"G4QIonIonElastic::PostStepDoIt: track is initialized"<<G4endl;
377 #endif
378  G4double weight = track.GetWeight();
379  G4double localtime = track.GetGlobalTime();
381 #ifdef debug
382  G4cout<<"G4QIonIonElastic::PostStepDoIt: before Touchable extraction"<<G4endl;
383 #endif
384  G4TouchableHandle trTouchable = track.GetTouchableHandle();
385 #ifdef debug
386  G4cout<<"G4QIonIonElastic::PostStepDoIt: Touchable is extracted"<<G4endl;
387 #endif
388  // Definitions for do nothing
389  G4double kinEnergy= projHadron->GetKineticEnergy()*MeV; // Kin energy in MeV (Is *MeV n?)
390  G4ParticleMomentum dir = projHadron->GetMomentumDirection();// It is a unit three-vector
391  // !! Exception for the proton target !!
392  G4bool revkin=false;
393  G4ThreeVector bvel(0.,0.,0.);
394  G4int tA=tZ+tN;
395  G4int targPDG=90000000+tZ*1000+tN; // CHIPS PDG Code of the target nucleus
396  G4QPDGCode targQPDG(targPDG); // @@ one can use G4Ion & get rid of CHIPS World
397  G4double tM=targQPDG.GetMass(); // CHIPS target mass in MeV
398  G4LorentzVector targ4M(0.,0.,0.,tM);
399  if(tZ==1 && !tN) // Update parameters in DB and trans to Antilab
400  {
402  GetMeanFreePath(track, -27., &cond); // @@ ?? jus to update parameters?
403 #ifdef debug
404  G4cout<<"G4QIonIonElastic::PostStepDoIt: After the GetMeanFreePath is called"<<G4endl;
405 #endif
406  revkin=true;
407  tZ=pZ;
408  tN=pN;
409  tA=tZ+tN;
410  tM=pM;
411  pZ=1; // @@ Is that necessary ??
412  pN=0; // @@ Is that necessary ??
413  pA=1; // @@ Is that necessary ??
414  pM=mProt;
415  bvel=proj4M.vect()/proj4M.e(); // Lab->Antilab transition boost velocity
416  proj4M=targ4M.boost(-bvel); // Proton 4-mom in Antilab
417  targ4M=G4LorentzVector(0.,0.,0.,tM); // Projectile nucleus 4-mom in Antilab
418  Momentum = proj4M.rho(); // Recalculate Momentum in Antilab
419  }
420  G4LorentzVector tot4M=proj4M+targ4M; // Total 4-mom of the reaction
421 #ifdef debug
422  G4cout<<"G4QIonIonElastic::PostStDI: tM="<<tM<<", p4M="<<proj4M<<", t4M="<<tot4M<<G4endl;
423 #endif
424  EnMomConservation=tot4M; // Total 4-mom of reaction for E/M conservation
428  // @@ Probably this is not necessary any more
429 #ifdef debug
430  G4cout<<"G4QIIEl::PSDI:f, P="<<Momentum<<",Z="<<tZ<<",N="<<tN<<",tPDG="<<projPDG<<G4endl;
431 #endif
432  // false means elastic cross-section
433  G4double xSec=0.; // Proto of Recalculated Cross Section
434  if(revkin) xSec=PELmanager->GetCrossSection(false, Momentum, tZ, tN, 2212);
435  else xSec=CSmanager->GetCrossSection(false, Momentum, tZ, tN, projPDG);
436 #ifdef debug
437  G4cout<<"G4QIIEl::PSDI: pPDG="<<projPDG<<",P="<<Momentum<<",CS="<<xSec/millibarn<<G4endl;
438 #endif
439 #ifdef nandebug
440  if(xSec>0. || xSec<0. || xSec==0);
441  else G4cout<<"-NaN-Warning-G4QIonIonElastic::PostStDoIt: xSec="<<xSec/millibarn<<G4endl;
442 #endif
443  // @@ check a possibility to separate p, n, or alpha (!)
444  if(xSec <= 0.) // The cross-section iz 0 -> Do Nothing
445  {
446 #ifdef pdebug
447  G4cerr<<"-Warning-G4QIonIonElastic::PostStDoIt: *Zero cross-section* PDG="<<projPDG
448  <<",tPDG="<<targPDG<<",P="<<Momentum<<G4endl;
449 #endif
450  //Do Nothing Action insead of the reaction
451  aParticleChange.ProposeEnergy(kinEnergy);
454  return G4VDiscreteProcess::PostStepDoIt(track,step);
455  }
456  G4double mint=0;
457  G4double maxt=0;
458  G4double dtM=tM+tM;
459  if(revkin)
460  {
461  mint=PELmanager->GetExchangeT(tZ,tN,2212); // functional randomized -t in MeV^2
462  maxt=PELmanager->GetHMaxT();
463  }
464  else
465  {
466  G4double PA=Momentum*pA;
467  G4double PA2=PA*PA;
468  maxt=dtM*PA2/(std::sqrt(PA2+pM2)+tM/2+pM2/dtM);
469 #ifdef pdebug
470  G4cout<<"G4QIonIonElastic::PostStDoIt:pPDG="<<projPDG<<",tPDG="<<targPDG<<",P="
471  <<Momentum<<",CS="<<xSec<<",maxt="<<maxt<<G4endl;
472 #endif
473  xSec=PELmanager->GetCrossSection(false, Momentum, 1, 0, 2212);// pp=nn
474  G4double B1=PELmanager->GetSlope(1,0,2212); // slope for pp=nn
475  xSec=NELmanager->GetCrossSection(false, Momentum, 1, 0, 2112);// np=pn
476  G4double B2 =NELmanager->GetSlope(1,0,2112); // slope for np=pn
477  G4double mB =((pZ*tZ+pN*tN)*B1+(pZ*tN+pN*tZ)*B2)/(pA+tA);
478  G4double pR2=std::pow(pA+4.,.305)/fm2MeV2;
479  G4double tR2=std::pow(tA+4.,.305)/fm2MeV2;
480  G4double eB =mB+pR2+tR2;
481  mint=-std::log(1.-G4UniformRand()*(1.-std::exp(-eB*maxt)))/eB;
482  mint+=mint;
483 #ifdef pdebug
484  G4cout<<"G4QIonIonElastic::PostStDoIt:B1="<<B1<<",B2="<<B2<<",mB="<<mB
485  <<",pR2="<<pR2<<",tR2="<<tR2<<",eB="<<eB<<",mint="<<mint<<G4endl;
486 #endif
487  }
488 #ifdef nandebug
489  if(mint>-.0000001);
490  else G4cout<<"-Warning-G4QIonIonElastic::PostStDoIt:-t="<<mint<<G4endl;
491 #endif
492  G4double cost=1.-mint/maxt; // cos(theta) in CMS
493  //
494 #ifdef ppdebug
495  G4cout<<"G4QIonIonElastic::PoStDoI:t="<<mint<<",dpcm2="<<CSmanager->GetHMaxT()<<",Ek="
496  <<kinEnergy<<",tM="<<tM<<",pM="<<pM<<",cost="<<cost<<G4endl;
497 #endif
498  if(cost>1. || cost<-1. || !(cost>-1. || cost<1.))
499  {
500  if(cost>1.000001 || cost<-1.000001 || !(cost>-1. || cost<1.))
501  {
502  G4double tM2=tM*tM; // Squared target mass
503  G4double pEn=pM+kinEnergy; // tot projectile Energy in MeV
504  G4double sM=dtM*pEn+tM2+pM2; // Mondelstam s
505  G4double twop2cm=(tM2+tM2)*(pEn*pEn-pM2)/sM;// Max_t/2 (2*p^2_cm)
506  G4cout<<"-Warning-G4QIonIonElastic::PoStDI:cos="<<cost<<",t="<<mint<<",T="<<kinEnergy
507  <<",tM="<<tM<<",tmax="<<2*kinEnergy*tM<<",p="<<projPDG<<",t="<<targPDG<<G4endl;
508  G4cout<<"G4QIonIonElastic::PSDI:dpcm2="<<twop2cm<<"="<<CSmanager->GetHMaxT()<<G4endl;
509  }
510  if (cost>1.) cost=1.;
511  else if(cost<-1.) cost=-1.;
512  }
513  G4LorentzVector scat4M(0.,0.,0.,pM); // 4-mom of the scattered projectile
514  G4LorentzVector reco4M(0.,0.,0.,tM); // 4-mom of the recoil target
515  G4LorentzVector dir4M=tot4M-G4LorentzVector(0.,0.,0.,(tot4M.e()-tM-pM)*.01);
516  if(!G4QHadron(tot4M).RelDecayIn2(scat4M, reco4M, dir4M, cost, cost))
517  {
518  G4cout<<"-Warning-G4QIonIonE::PSDI:t4M="<<tot4M<<",pM="<<pM<<",tM="<<tM<<",cost="
519  <<cost<<G4endl;
520  }
521  if(revkin)
522  {
523  G4LorentzVector tmpLV=scat4M.boost(bvel); // Recoil target Back to LS
524  scat4M=reco4M.boost(bvel); // Scattered Progectile Back to LS
525  reco4M=tmpLV;
526  pM=tM;
527  tM=mProt;
528  }
529 #ifdef debug
530  G4cout<<"G4QIonIonElast::PSDI:s4M="<<scat4M<<"+r4M="<<reco4M<<"="<<scat4M+reco4M<<G4endl;
531  G4cout<<"G4QIonIonElastic::PSDI:scatE="<<scat4M.e()-pM<<",recoE="<<reco4M.e()-tM<<",d4M="
532  <<tot4M-scat4M-reco4M<<G4endl;
533 #endif
534  // Update G4VParticleChange for the scattered projectile
535  G4double finE=scat4M.e()-pM; // Final kinetic energy of the scattered proton
536  if(finE>0.0) aParticleChange.ProposeEnergy(finE);
537  else
538  {
539  if(finE<-1.e-8 || !(finE>-1.||finE<1.)) // NAN or negative
540  G4cerr<<"*Warning*G4QIonIonElastic::PostStDoIt: Zero or negative scattered E="<<finE
541  <<", s4M="<<scat4M<<", r4M="<<reco4M<<", d4M="<<tot4M-scat4M-reco4M<<G4endl;
544  }
545  G4ThreeVector findir=scat4M.vect()/scat4M.rho(); // Unit vector in new direction
546  aParticleChange.ProposeMomentumDirection(findir); // new direction for the scattered part
547  EnMomConservation-=scat4M; // It must be initialized by (pE+tM,pP)
548  // This is how in general the secondary should be identified
549  G4DynamicParticle* theSec = new G4DynamicParticle; // A secondary for the recoil hadron
550 #ifdef pdebug
551  G4cout<<"G4QIonIonElastic::PostStepDoIt: Ion tZ="<<tZ<<", tA="<<tA<<G4endl;
552 #endif
553  G4ParticleDefinition* theDefinition=0;
554  if(revkin) theDefinition = G4Proton::Proton();
555  else theDefinition = G4ParticleTable::GetParticleTable()->FindIon(tZ,tA,0,tZ);
556  if(!theDefinition)G4cout<<"-Warning-G4QIonIonElastic::PoStDI:drop PDG="<<targPDG<<G4endl;
557 #ifdef pdebug
558  G4cout<<"G4QIonIonElastic::PoStDI:RecoilName="<<theDefinition->GetParticleName()<<G4endl;
559 #endif
560  theSec->SetDefinition(theDefinition);
561  EnMomConservation-=reco4M;
562 #ifdef tdebug
563  G4cout<<"G4QIonIonElastic::PSD:"<<targPDG<<reco4M<<reco4M.m()<<EnMomConservation<<G4endl;
564 #endif
565  theSec->Set4Momentum(reco4M);
566 #ifdef debug
567  G4ThreeVector curD=theSec->GetMomentumDirection();
568  G4double curM=theSec->GetMass();
569  G4double curE=theSec->GetKineticEnergy()+curM;
570  G4cout<<"G4QIonIonElastic::PSDI: p="<<curD<<curD.mag()<<",e="<<curE<<",m="<<curM<<G4endl;
571 #endif
572  // Make a recoil nucleus
573  G4Track* aNewTrack = new G4Track(theSec, localtime, position );
574  aNewTrack->SetWeight(weight); // weighted
575  aNewTrack->SetTouchableHandle(trTouchable);
576  aParticleChange.AddSecondary( aNewTrack );
577 #ifdef debug
578  G4cout<<"G4QIonIonElastic::PostStepDoIt: **** PostStepDoIt is done ****"<<G4endl;
579 #endif
580  return G4VDiscreteProcess::PostStepDoIt(track, step);
581 }