Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4NeutronCaptureAtRest.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // G4NeutronCaptureAtRest physics process
27 // Larry Felawka (TRIUMF), April 1998
28 //---------------------------------------------------------------------
29 
30 #include <string.h>
31 #include <cmath>
32 #include <stdio.h>
33 
35 #include "G4SystemOfUnits.hh"
36 #include "G4DynamicParticle.hh"
37 #include "G4ParticleTypes.hh"
38 #include "Randomize.hh"
40 #include "G4HadronicDeprecate.hh"
41 
42 #define MAX_SECONDARIES 100
43 
44 // constructor
45 
46 G4NeutronCaptureAtRest::G4NeutronCaptureAtRest(const G4String& processName,
47  G4ProcessType aType ) :
48  G4VRestProcess (processName, aType), // initialization
49  massProton(G4Proton::Proton()->GetPDGMass()/GeV),
50  massNeutron(G4Neutron::Neutron()->GetPDGMass()/GeV),
51  massElectron(G4Electron::Electron()->GetPDGMass()/GeV),
52  massDeuteron(G4Deuteron::Deuteron()->GetPDGMass()/GeV),
53  massAlpha(G4Alpha::Alpha()->GetPDGMass()/GeV),
54  pdefGamma(G4Gamma::Gamma()),
55  pdefNeutron(G4Neutron::Neutron())
56 {
57  G4HadronicDeprecate("G4NeutronCaptureAtRest");
58  if (verboseLevel>0) {
59  G4cout << GetProcessName() << " is created "<< G4endl;
60  }
65 
67 }
68 
69 // destructor
70 
72 {
74  delete [] pv;
75  delete [] eve;
76  delete [] gkin;
77 }
78 
80 {
82 }
83 
85 {
87 }
88 
89 // methods.............................................................................
90 
92  const G4ParticleDefinition& particle
93  )
94 {
95  return ( &particle == pdefNeutron );
96 
97 }
98 
99 // Warning - this method may be optimized away if made "inline"
101 {
102  return ( ngkine );
103 
104 }
105 
106 // Warning - this method may be optimized away if made "inline"
108 {
109  return ( &gkin[0] );
110 
111 }
112 
114  const G4Track& track,
116  )
117 {
118  // beggining of tracking
120 
121  // condition is set to "Not Forced"
122  *condition = NotForced;
123 
124  // get mean life time
125  currentInteractionLength = GetMeanLifeTime(track, condition);
126 
127  if ((currentInteractionLength <0.0) || (verboseLevel>2)){
128  G4cout << "G4NeutronCaptureAtRestProcess::AtRestGetPhysicalInteractionLength ";
129  G4cout << "[ " << GetProcessName() << "]" <<G4endl;
130  track.GetDynamicParticle()->DumpInfo();
131  G4cout << " in Material " << track.GetMaterial()->GetName() <<G4endl;
132  G4cout << "MeanLifeTime = " << currentInteractionLength/ns << "[ns]" <<G4endl;
133  }
134 
136 
137 }
138 
140  const G4Track& track,
141  const G4Step&
142  )
143 //
144 // Handles Neutrons at rest; a Neutron can either create secondaries or
145 // do nothing (in which case it should be sent back to decay-handling
146 // section
147 //
148 {
149 
150 // Initialize ParticleChange
151 // all members of G4VParticleChange are set to equal to
152 // corresponding member in G4Track
153 
155 
156 // Store some global quantities that depend on current material and particle
157 
158  globalTime = track.GetGlobalTime()/s;
159  G4Material * aMaterial = track.GetMaterial();
160  const G4int numberOfElements = aMaterial->GetNumberOfElements();
161  const G4ElementVector* theElementVector = aMaterial->GetElementVector();
162 
163  const G4double* theAtomicNumberDensity = aMaterial->GetAtomicNumDensityVector();
164  G4double normalization = 0;
165  for ( G4int i1=0; i1 < numberOfElements; i1++ )
166  {
167  normalization += theAtomicNumberDensity[i1] ; // change when nucleon specific
168  // probabilities are included.
169  }
170  G4double runningSum= 0.;
171  G4double random = G4UniformRand()*normalization;
172  for ( G4int i2=0; i2 < numberOfElements; i2++ )
173  {
174  runningSum += theAtomicNumberDensity[i2]; // change when nucleon specific
175  // probabilities are included.
176  if (random<=runningSum)
177  {
178  targetCharge = G4double((*theElementVector)[i2]->GetZ());
179  targetAtomicMass = (*theElementVector)[i2]->GetN();
180  }
181  }
182  if (random>runningSum)
183  {
184  targetCharge = G4double((*theElementVector)[numberOfElements-1]->GetZ());
185  targetAtomicMass = (*theElementVector)[numberOfElements-1]->GetN();
186 
187  }
188 
189  if (verboseLevel>1) {
190  G4cout << "G4NeutronCaptureAtRest::AtRestDoIt is invoked " <<G4endl;
191  }
192 
193  G4ParticleMomentum momentum;
194  G4float localtime;
195 
197 
198  GenerateSecondaries(); // Generate secondaries
199 
201 
202  for ( G4int isec = 0; isec < ngkine; isec++ ) {
203  G4DynamicParticle* aNewParticle = new G4DynamicParticle;
204  aNewParticle->SetDefinition( gkin[isec].GetParticleDef() );
205  aNewParticle->SetMomentum( gkin[isec].GetMomentum() * GeV );
206 
207  localtime = globalTime + gkin[isec].GetTOF();
208 
209  G4Track* aNewTrack = new G4Track( aNewParticle, localtime*s, position );
210  aNewTrack->SetTouchableHandle(track.GetTouchableHandle());
211  aParticleChange.AddSecondary( aNewTrack );
212 
213  }
214 
216 
217  aParticleChange.ProposeTrackStatus(fStopAndKill); // Kill the incident Neutron
218 
219 // clear InteractionLengthLeft
220 
222 
223  return &aParticleChange;
224 
225 }
226 
227 
228 void G4NeutronCaptureAtRest::GenerateSecondaries()
229 {
230  static G4int index;
231  static G4int l;
232  static G4int nopt;
233  static G4int i;
234  // DHW 15 May 2011: unused: static G4ParticleDefinition* jnd;
235 
236  for (i = 1; i <= MAX_SECONDARIES; ++i) {
237  pv[i].SetZero();
238  }
239 
240  ngkine = 0; // number of generated secondary particles
241  ntot = 0;
242  result.SetZero();
243  result.SetMass( massNeutron );
244  result.SetKineticEnergyAndUpdate( 0. );
245  result.SetTOF( 0. );
246  result.SetParticleDef( pdefNeutron );
247 
248  NeutronCapture(&nopt);
249 
250  // *** CHECK WHETHER THERE ARE NEW PARTICLES GENERATED ***
251  if (ntot != 0 || result.GetParticleDef() != pdefNeutron) {
252  // *** CURRENT PARTICLE IS NOT THE SAME AS IN THE BEGINNING OR/AND ***
253  // *** ONE OR MORE SECONDARIES HAVE BEEN GENERATED ***
254 
255  // --- INITIAL PARTICLE TYPE HAS BEEN CHANGED ==> PUT NEW TYPE ON ---
256  // --- THE GEANT TEMPORARY STACK ---
257 
258  // --- PUT PARTICLE ON THE STACK ---
259  gkin[0] = result;
260  gkin[0].SetTOF( result.GetTOF() * 5e-11 );
261  ngkine = 1;
262 
263  // --- ALL QUANTITIES ARE TAKEN FROM THE GHEISHA STACK WHERE THE ---
264  // --- CONVENTION IS THE FOLLOWING ---
265 
266  // --- ONE OR MORE SECONDARIES HAVE BEEN GENERATED ---
267  for (l = 1; l <= ntot; ++l) {
268  index = l - 1;
269  // DHW 15 May 2011: unused: jnd = eve[index].GetParticleDef();
270 
271  // --- ADD PARTICLE TO THE STACK IF STACK NOT YET FULL ---
272  if (ngkine < MAX_SECONDARIES) {
273  gkin[ngkine] = eve[index];
274  gkin[ngkine].SetTOF( eve[index].GetTOF() * 5e-11 );
275  ++ngkine;
276  }
277  }
278  }
279  else {
280  // --- NO SECONDARIES GENERATED AND PARTICLE IS STILL THE SAME ---
281  // --- ==> COPY EVERYTHING BACK IN THE CURRENT GEANT STACK ---
282  ngkine = 0;
283  ntot = 0;
284  globalTime += result.GetTOF() * G4float(5e-11);
285  }
286 
287  // --- LIMIT THE VALUE OF NGKINE IN CASE OF OVERFLOW ---
288  ngkine = G4int(std::min(ngkine,G4int(MAX_SECONDARIES)));
289 
290 } // GenerateSecondaries
291 
292 
293 void G4NeutronCaptureAtRest::Normal(G4float *ran)
294 {
295  static G4int i;
296 
297  // *** NVE 14-APR-1988 CERN GENEVA ***
298  // ORIGIN : H.FESEFELDT (27-OCT-1983)
299 
300  *ran = G4float(-6.);
301  for (i = 1; i <= 12; ++i) {
302  *ran += G4UniformRand();
303  }
304 
305 } // Normal
306 
307 
308 void G4NeutronCaptureAtRest::NeutronCapture(G4int *nopt)
309 {
310  static G4int nt;
311  static G4float xp, pcm;
312  static G4float ran;
313 
314  // *** ROUTINE FOR CAPTURE OF NEUTRAL BARYONS ***
315  // *** NVE 04-MAR-1988 CERN GENEVA ***
316  // ORIGIN : H.FESEFELDT (02-DEC-1986)
317 
318  *nopt = 1;
319  pv[1] = result;
320  pv[2].SetZero();
321  pv[2].SetMass( AtomAs(targetAtomicMass, targetCharge) );
322  pv[2].SetMomentumAndUpdate( 0., 0., 0. );
323  pv[2].SetTOF( result.GetTOF() );
324  pv[2].SetParticleDef( NULL );
325  pv[MAX_SECONDARIES].Add( pv[1], pv[2] );
326  pv[MAX_SECONDARIES].SetMomentum( -pv[MAX_SECONDARIES].GetMomentum().x(), -pv[MAX_SECONDARIES].GetMomentum().y(), -pv[MAX_SECONDARIES].GetMomentum().z() );
327  pv[MAX_SECONDARIES].SetParticleDef( NULL );
328  Normal(&ran);
329  pcm = ran * G4float(.001) + G4float(.0065);
330  ran = G4UniformRand();
331  result.SetTOF( result.GetTOF() - std::log(ran) * G4float(480.) );
332  pv[3].SetZero();
333  pv[3].SetMass( 0. );
334  pv[3].SetKineticEnergyAndUpdate( pcm );
335  pv[3].SetTOF( result.GetTOF() );
336  pv[3].SetParticleDef( pdefGamma );
337  pv[3].Lor( pv[3], pv[MAX_SECONDARIES] );
338  nt = 3;
339  xp = G4float(.008) - pcm;
340  if (xp >= G4float(0.)) {
341  nt = 4;
342  pv[4].SetZero();
343  pv[4].SetMass( 0. );
344  pv[4].SetKineticEnergyAndUpdate( xp );
345  pv[4].SetTOF( result.GetTOF() );
346  pv[4].SetParticleDef( pdefGamma );
347  pv[4].Lor( pv[4], pv[MAX_SECONDARIES] );
348  }
349  result = pv[3];
350  if (nt == 4) {
351  if (ntot < MAX_SECONDARIES-1) {
352  eve[ntot++] = pv[4];
353  }
354  }
355 
356 } // NeutronCapture
357 
358 
359 G4double G4NeutronCaptureAtRest::AtomAs(G4float a, G4float z)
360 {
361  G4float ret_val;
362  G4double d__1, d__2;
363 
364  static G4double aa;
365  static G4int ia, iz;
366  static G4double zz;
367  static G4float rma, rmd;
368  static G4int ipp;
369  static G4float rmn, rmp;
370  static G4int izz;
371  static G4float rmel;
372  static G4double mass;
373 
374  // *** DETERMINATION OF THE ATOMIC MASS ***
375  // *** NVE 19-MAY-1988 CERN GENEVA ***
376  // ORIGIN : H.FESEFELDT (02-DEC-1986)
377 
378  // --- GET ATOMIC (= ELECTRONS INCL.) MASSES (IN MEV) FROM RMASS ARRAY ---
379  // --- ELECTRON ---
380  rmel = massElectron * G4float(1e3);
381  // --- PROTON ---
382  rmp = massProton * G4float(1e3);
383  // --- NEUTRON ---
384  rmn = massNeutron * G4float(1e3);
385  // --- DEUTERON ---
386  rmd = massDeuteron * G4float(1e3) + rmel;
387  // --- ALPHA ---
388  rma = massAlpha * G4float(1e3) + rmel * G4float(2.);
389 
390  ret_val = G4float(0.);
391  aa = a * 1.;
392  zz = z * 1.;
393  ia = G4int(a + G4float(.5));
394  if (ia < 1) {
395  return ret_val;
396  }
397  iz = G4int(z + G4float(.5));
398  if (iz < 0 || iz > ia) {
399  return ret_val;
400  }
401  mass = 0.;
402  if (ia == 1) {
403  if (iz == 0) {
404  mass = rmn;
405  }
406  else if (iz == 1) {
407  mass = rmp + rmel;
408  }
409  }
410  else if (ia == 2 && iz == 1) {
411  mass = rmd;
412  }
413  else if (ia == 4 && iz == 2) {
414  mass = rma;
415  }
416  else if ( (ia == 2 && iz != 1) || ia == 3 || (ia == 4 && iz != 2) || ia > 4) {
417  d__1 = aa / G4float(2.) - zz;
418  d__2 = zz;
419  mass = (aa - zz) * rmn + zz * rmp + zz * rmel - aa * G4float(15.67) +
420  std::pow(aa, .6666667) * G4float(17.23) + d__1 * d__1 * G4float(93.15) / aa +
421  d__2 * d__2 * G4float(.6984523) / std::pow(aa, .3333333);
422  ipp = (ia - iz) % 2;
423  izz = iz % 2;
424  if (ipp == izz) {
425  mass += (ipp + izz - 1) * G4float(12.) * std::pow(aa, -.5);
426  }
427  }
428  ret_val = mass * G4float(.001);
429  return ret_val;
430 
431 } // AtomAs