Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4MuMinusCapturePrecompound.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 //-----------------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 // File name: G4MuMinusCapturePrecompound
33 //
34 // Author: V.Ivanchenko (Vladimir.Ivantchenko@cern.ch)
35 //
36 // Creation date: 22 April 2012 on base of G4MuMinusCaptureCascade
37 //
38 //
39 //-----------------------------------------------------------------------------
40 //
41 // Modifications:
42 //
43 //-----------------------------------------------------------------------------
44 
46 #include "Randomize.hh"
47 #include "G4RandomDirection.hh"
48 #include "G4PhysicalConstants.hh"
49 #include "G4SystemOfUnits.hh"
50 #include "G4MuonMinus.hh"
51 #include "G4NeutrinoMu.hh"
52 #include "G4Neutron.hh"
53 #include "G4Proton.hh"
54 #include "G4Triton.hh"
55 #include "G4LorentzVector.hh"
56 #include "G4ParticleDefinition.hh"
57 #include "G4NucleiProperties.hh"
58 #include "G4VPreCompoundModel.hh"
59 #include "G4PreCompoundModel.hh"
61 
62 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
63 
66  : G4HadronicInteraction("muMinusNuclearCapture")
67 {
68  fMuMass = G4MuonMinus::MuonMinus()->GetPDGMass();
69  fProton = G4Proton::Proton();
70  fNeutron = G4Neutron::Neutron();
71  fThreshold = 10*MeV;
72  fPreCompound = ptr;
73  if(!ptr) {
76  ptr = static_cast<G4VPreCompoundModel*>(p);
77  fPreCompound = ptr;
78  if(!ptr) { fPreCompound = new G4PreCompoundModel(); }
79  }
80 }
81 
82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
83 
85 {
86  result.Clear();
87 }
88 
89 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
90 
93  G4Nucleus& targetNucleus)
94 {
95  result.Clear();
97  fTime = projectile.GetGlobalTime();
98  G4double time0 = fTime;
99 
100  G4double muBindingEnergy = projectile.GetBoundEnergy();
101 
102  G4int Z = targetNucleus.GetZ_asInt();
103  G4int A = targetNucleus.GetA_asInt();
105 
106  /*
107  G4cout << "G4MuMinusCapturePrecompound::ApplyYourself: Emu= "
108  << muBindingEnergy << G4endl;
109  */
110  // Energy on K-shell
111  G4double muEnergy = fMuMass + muBindingEnergy;
112  G4double muMom = std::sqrt(muBindingEnergy*(muBindingEnergy + 2.0*fMuMass));
113  G4double availableEnergy = massA + fMuMass - muBindingEnergy;
114  G4double residualMass = G4NucleiProperties::GetNuclearMass(A, Z - 1);
115 
116  G4ThreeVector vmu = muMom*G4RandomDirection();
117  G4LorentzVector aMuMom(vmu, muEnergy);
118 
119  // p or 3He as a target
120  // two body reaction mu- + A(Z,A) -> nuMu + A(Z-1,A)
121  if((1 == Z && 1 == A) || (2 == Z && 3 == A)) {
122 
123  G4ParticleDefinition* pd = 0;
124  if(1 == Z) { pd = fNeutron; }
125  else { pd = G4Triton::Triton(); }
126 
127  //
128  // Computation in assumption of CM reaction
129  //
130  G4double e = 0.5*(availableEnergy -
131  residualMass*residualMass/availableEnergy);
132 
134  AddNewParticle(G4NeutrinoMu::NeutrinoMu(), nudir, e);
135  nudir *= -1.0;
136  AddNewParticle(pd, nudir, availableEnergy - e - residualMass);
137 
138 
139  } else {
140  // sample mu- + p -> nuMu + n reaction in CM of muonic atom
141 
142  // muon
143 //
144 // NOTE by K.Genser and J.Yarba:
145 // The code below isn't working because emu always turns smaller than fMuMass
146 // For this reason the sqrt is producing a NaN
147 //
148 // G4double emu = (availableEnergy*availableEnergy - massA*massA
149 // + fMuMass*fMuMass)/(2*availableEnergy);
150 // G4ThreeVector mudir = G4RandomDirection();
151 // G4LorentzVector momMuon(std::sqrt(emu*emu - fMuMass*fMuMass)*mudir, emu);
152 
153  // nucleus
154  G4LorentzVector momInitial(0.0,0.0,0.0,availableEnergy);
155  G4LorentzVector momResidual, momNu;
156 
157  // pick random proton inside nucleus
158  G4double eEx;
159  fNucleus.Init(A, Z);
160  const std::vector<G4Nucleon>& nucleons= fNucleus.GetNucleons();
161  G4ParticleDefinition* pDef;
162 
163  G4int nneutrons = 1;
164  G4int reentryCount = 0;
165 
166  do {
167  ++reentryCount;
168  G4int index = 0;
169  do {
170  index=G4int(A*G4UniformRand());
171  pDef = nucleons[index].GetDefinition();
172  } while(pDef != fProton);
173  G4LorentzVector momP = nucleons[index].Get4Momentum();
174 
175  // Get CMS kinematics
176  G4LorentzVector theCMS = momP + aMuMom;
177  G4ThreeVector bst = theCMS.boostVector();
178 
179  G4double Ecms = theCMS.mag();
180  G4double Enu = 0.5*(Ecms - neutron_mass_c2*neutron_mass_c2/Ecms);
181  eEx = 0.0;
182 
183  if(Enu > 0.0) {
184  // make the nu, and transform to lab;
185  momNu.set(Enu*G4RandomDirection(), Enu);
186 
187  // nu in lab.
188  momNu.boost(bst);
189  momResidual = momInitial - momNu;
190  eEx = momResidual.mag() - residualMass;
191 
192  // release neutron
193 
194  if(eEx > 0.0) {
195  G4double eth = residualMass - massA + fThreshold + 2*neutron_mass_c2;
196  if(Ecms - Enu > eth) {
197  theCMS -= momNu;
198  G4double ekin = theCMS.e() - eth;
199  G4ThreeVector dir = theCMS.vect().unit();
200  AddNewParticle(fNeutron, dir, ekin);
201  momResidual -=
202  result.GetSecondary(0)->GetParticle()->Get4Momentum();
203  --Z;
204  --A;
205  residualMass = G4NucleiProperties::GetNuclearMass(A, Z);
206  nneutrons = 0;
207  }
208  }
209  }
210  if(Enu <= 0.0 && eEx <= 0.0 && reentryCount > 100) {
212  ed << "Call for " << GetModelName() << G4endl;
213  ed << "Target Z= " << Z
214  << " A= " << A << G4endl;
215  ed << " ApplyYourself does not completed after 100 attempts" << G4endl;
216  G4Exception("G4MuMinusCapturePrecompound::AtRestDoIt", "had006",
217  FatalException, ed);
218  }
219  } while(eEx <= 0.0);
220 
221  G4ThreeVector dir = momNu.vect().unit();
222  AddNewParticle(G4NeutrinoMu::NeutrinoMu(), dir, momNu.e());
223 
224  G4Fragment initialState(A, Z, momResidual);
225  initialState.SetNumberOfExcitedParticle(nneutrons,0);
226  initialState.SetNumberOfHoles(1,1);
227 
228  // decay time for pre-compound/de-excitation starts from zero
229  G4ReactionProductVector* rpv = fPreCompound->DeExcite(initialState);
230  size_t n = rpv->size();
231  for(size_t i=0; i<n; ++i) {
232  G4ReactionProduct* rp = (*rpv)[i];
233 
234  // reaction time
235  fTime = time0 + rp->GetTOF();
236  G4ThreeVector direction = rp->GetMomentum().unit();
237  AddNewParticle(rp->GetDefinition(), direction, rp->GetKineticEnergy());
238  delete rp;
239  }
240  delete rpv;
241  }
242  if(verboseLevel > 1)
243  G4cout << "G4MuMinusCapturePrecompound::ApplyYourself: Nsec= "
244  << result.GetNumberOfSecondaries()
245  <<" E0(MeV)= " <<availableEnergy/MeV
246  <<" Mres(GeV)= " <<residualMass/GeV
247  <<G4endl;
248 
249  return &result;
250 }
251 
252 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
253 
255 {
256  outFile << "Sampling of mu- capture by atomic nucleus from K-shell"
257  << " mesoatom orbit.\n"
258  << "Primary reaction mu- + p -> n + neutrino, neutron providing\n"
259  << " initial excitation of the target nucleus and PreCompound"
260  << " model samples final state\n";
261 }
262 
263 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....