Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4LEAlphaInelastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // Hadronic Process: Alpha Inelastic Process
27 // J.L. Chuma, TRIUMF, 25-Feb-1997
28 // J.L. Chuma, 08-May-2001: Update original incident passed back in vec[0]
29 // from NuclearReaction
30 
31 #include <iostream>
32 
33 #include "G4LEAlphaInelastic.hh"
34 #include "G4SystemOfUnits.hh"
35 #include "Randomize.hh"
36 #include "G4Electron.hh"
37 
40 {
41  SetMinEnergy(0.0*GeV);
42  SetMaxEnergy(10.*TeV);
43  G4cout << "WARNING: model G4LEAlphaInelastic is being deprecated and will\n"
44  << "disappear in Geant4 version 10.0" << G4endl;
45 }
46 
47 
49 {
50  outFile << "G4LEAlphaInelastic is one of the Low Energy Parameterized\n"
51  << "(LEP) models used to implement inelastic alpha scattering\n"
52  << "from nuclei. It is a re-engineered version of the GHEISHA\n"
53  << "code of H. Fesefeldt. It divides the initial collision\n"
54  << "products into backward- and forward-going clusters which are\n"
55  << "then decayed into final state hadrons. The model does not\n"
56  << "conserve energy on an event-by-event basis. It may be\n"
57  << "applied to alphas with initial energies between 0 and 10\n"
58  << "TeV.\n";
59 }
60 
61 
64  G4Nucleus& targetNucleus)
65 {
67  const G4HadProjectile* originalIncident = &aTrack;
68 
69  G4double A = targetNucleus.GetA_asInt();
70  G4double Z = targetNucleus.GetZ_asInt();
71 
72  G4double kineticEnergy = aTrack.Get4Momentum().e()-aTrack.GetDefinition()->GetPDGMass();
73  if (verboseLevel > 1) {
74  const G4Material *targetMaterial = aTrack.GetMaterial();
75  G4cout << "G4LEAlphaInelastic::ApplyYourself called" << G4endl;
76  G4cout << "kinetc energy = " <<kineticEnergy/MeV << "MeV, ";
77  G4cout << "target material = " << targetMaterial->GetName() << G4endl;
78  }
79 
80  // Work-around for lack of model above 100 MeV
81  if (kineticEnergy/MeV > 100. || kineticEnergy <= 0.1*MeV) {
85  return &theParticleChange;
86  }
87  G4double theAtomicMass = targetNucleus.AtomicMass( A, Z );
88  G4double massVec[9];
89  massVec[0] = targetNucleus.AtomicMass( A+4.0, Z+2.0 );
90  massVec[1] = targetNucleus.AtomicMass( A+3.0, Z+2.0 );
91  massVec[2] = targetNucleus.AtomicMass( A+3.0, Z+1.0 );
92  massVec[3] = targetNucleus.AtomicMass( A+2.0, Z+1.0 );
93  massVec[4] = targetNucleus.AtomicMass( A+1.0, Z+1.0 );
94  massVec[5] = theAtomicMass;
95  massVec[6] = targetNucleus.AtomicMass( A+2.0, Z+2.0 );
96  massVec[7] = massVec[3];
97  massVec[8] = targetNucleus.AtomicMass( A+2.0, Z );
98 
99  G4FastVector<G4ReactionProduct,4> vec; // vec will contain the secondary particles
100  G4int vecLen = 0;
101  vec.Initialize( 0 );
102 
103  theReactionDynamics.NuclearReaction(vec, vecLen, &aTrack,
104  targetNucleus, theAtomicMass, massVec);
105 
106  G4double p = vec[0]->GetMomentum().mag();
107  theParticleChange.SetMomentumChange( vec[0]->GetMomentum() *(1./p));
108  theParticleChange.SetEnergyChange( vec[0]->GetKineticEnergy() );
109  delete vec[0];
110 
111  if (vecLen <= 1)
112  {
116  return &theParticleChange;
117  }
118 
119  G4DynamicParticle *pd;
120  for (G4int i = 1; i < vecLen; ++i) {
121  pd = new G4DynamicParticle();
122  pd->SetDefinition( vec[i]->GetDefinition() );
123  pd->SetMomentum( vec[i]->GetMomentum() );
125  delete vec[i];
126  }
127 
128  if (isotopeProduction) DoIsotopeCounting(originalIncident, targetNucleus);
129  return &theParticleChange;
130 }