Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ElectroVDNuclearModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: $
27 //
28 // Author: D.H. Wright
29 // Date: 1 May 2012
30 //
31 // Description: model for electron and positron interaction with nuclei
32 // using the equivalent photon spectrum. A real gamma is
33 // produced from the virtual photon spectrum and is then
34 // interacted hadronically by the Bertini cascade at low
35 // energies. At high energies the gamma is treated as a
36 // pi0 and interacted with the nucleus using the FTFP model.
37 // The electro- and photo-nuclear cross sections of
38 // M. Kossov are used to generate the virtual photon
39 // spectrum.
40 //
41 
43 
44 #include "G4PhysicalConstants.hh"
45 #include "G4SystemOfUnits.hh"
46 
49 
50 #include "G4CascadeInterface.hh"
51 #include "G4TheoFSGenerator.hh"
53 #include "G4ExcitationHandler.hh"
54 #include "G4PreCompoundModel.hh"
56 #include "G4ExcitedStringDecay.hh"
57 #include "G4FTFModel.hh"
58 
59 #include "G4HadFinalState.hh"
60 
61 
63  : G4HadronicInteraction("G4ElectroVDNuclearModel"),
64  leptonKE(0.0), photonEnergy(0.0), photonQ2(0.0)
65 {
66  SetMinEnergy(0.0);
67  SetMaxEnergy(1*PeV);
68 
69  electroXS = new G4ElectroNuclearCrossSection();
70  gammaXS = new G4PhotoNuclearCrossSection();
71  ftfp = new G4TheoFSGenerator();
72  precoInterface = new G4GeneratorPrecompoundInterface();
73  theHandler = new G4ExcitationHandler();
74  preEquilib = new G4PreCompoundModel(theHandler);
75  precoInterface->SetDeExcitation(preEquilib);
76  ftfp->SetTransport(precoInterface);
77  theFragmentation = new G4LundStringFragmentation();
78  theStringDecay = new G4ExcitedStringDecay(theFragmentation);
79  theStringModel = new G4FTFModel();
80  theStringModel->SetFragmentationModel(theStringDecay);
81  ftfp->SetHighEnergyGenerator(theStringModel);
82 
83  // Build Bertini model
84  bert = new G4CascadeInterface();
85 }
86 
87 
89 {
90  delete electroXS;
91  delete gammaXS;
92  delete ftfp;
93  delete preEquilib;
94  delete theFragmentation;
95  delete theStringDecay;
96  delete theStringModel;
97  delete bert;
98 }
99 
100 
102 {
103  outFile << "G4ElectroVDNuclearModel handles the inelastic scattering\n"
104  << "of e- and e+ from nuclei using the equivalent photon\n"
105  << "approximation in which the incoming lepton generates a\n"
106  << "virtual photon at the electromagnetic vertex, and the\n"
107  << "virtual photon is converted to a real photon. At low\n"
108  << "energies, the photon interacts directly with the nucleus\n"
109  << "using the Bertini cascade. At high energies the photon\n"
110  << "is converted to a pi0 which interacts using the FTFP\n"
111  << "model. The electro- and gamma-nuclear cross sections of\n"
112  << "M. Kossov are used to generate the virtual photon spectrum\n";
113 }
114 
115 
118  G4Nucleus& targetNucleus)
119 {
120  // Set up default particle change (just returns initial state)
123  leptonKE = aTrack.GetKineticEnergy();
126 
127  // Set up sanity checks for real photon production
128  G4DynamicParticle lepton(aTrack.GetDefinition(), aTrack.Get4Momentum() );
129  G4int targZ = targetNucleus.GetZ_asInt();
130  G4int targA = targetNucleus.GetA_asInt();
131  G4Isotope* iso = 0;
132  G4Element* ele = 0;
133  G4Material* mat = 0;
134  G4double eXS = electroXS->GetIsoCrossSection(&lepton, targZ, targA, iso, ele, mat);
135 
136  // If electronuclear cross section is negative, return initial track
137  if (eXS > 0.0) {
138  photonEnergy = electroXS->GetEquivalentPhotonEnergy();
139  // Photon energy cannot exceed lepton energy
140  if (photonEnergy < leptonKE) {
141  photonQ2 = electroXS->GetEquivalentPhotonQ2(photonEnergy);
143  // Photon
144  if (photonEnergy > photonQ2/dM) {
145  // Produce recoil lepton and transferred photon
146  G4DynamicParticle* transferredPhoton = CalculateEMVertex(aTrack, targetNucleus);
147  // Interact gamma with nucleus
148  if (transferredPhoton) CalculateHadronicVertex(transferredPhoton, targetNucleus);
149  }
150  }
151  }
152  return &theParticleChange;
153 }
154 
155 
157 G4ElectroVDNuclearModel::CalculateEMVertex(const G4HadProjectile& aTrack,
158  G4Nucleus& targetNucleus)
159 {
160  G4DynamicParticle photon(G4Gamma::Gamma(), photonEnergy,
161  G4ThreeVector(0.,0.,1.) );
162 
163  // Get gamma cross section at Q**2 = 0 (real gamma)
164  G4int targZ = targetNucleus.GetZ_asInt();
165  G4int targA = targetNucleus.GetA_asInt();
166  G4Isotope* iso = 0;
167  G4Element* ele = 0;
168  G4Material* mat = 0;
169  G4double sigNu =
170  gammaXS->GetIsoCrossSection(&photon, targZ, targA, iso, ele, mat);
171 
172  // Change real gamma energy to equivalent energy and get cross section at that energy
174  photon.SetKineticEnergy(photonEnergy - photonQ2/dM);
175  G4double sigK =
176  gammaXS->GetIsoCrossSection(&photon, targZ, targA, iso, ele, mat);
177  G4double rndFraction = electroXS->GetVirtualFactor(photonEnergy, photonQ2);
178 
179  // No gamma produced, return null ptr
180  if (sigNu*G4UniformRand() > sigK*rndFraction) return 0;
181 
182  // Scatter the lepton
183  G4double mProj = aTrack.GetDefinition()->GetPDGMass();
184  G4double mProj2 = mProj*mProj;
185  G4double iniE = leptonKE + mProj; // Total energy of incident lepton
186  G4double finE = iniE - photonEnergy; // Total energy of scattered lepton
188  G4double iniP = std::sqrt(iniE*iniE-mProj2); // Incident lepton momentum
189  G4double finP = std::sqrt(finE*finE-mProj2); // Scattered lepton momentum
190  G4double cost = (iniE*finE - mProj2 - photonQ2/2.)/iniP/finP; // cos(theta) from Q**2
191  if (cost > 1.) cost= 1.;
192  if (cost < -1.) cost=-1.;
193  G4double sint = std::sqrt(1.-cost*cost);
194 
195  G4ThreeVector dir = aTrack.Get4Momentum().vect().unit();
196  G4ThreeVector ortx = dir.orthogonal().unit(); // Ortho-normal to scattering plane
197  G4ThreeVector orty = dir.cross(ortx); // Third unit vector
198  G4double phi = twopi*G4UniformRand();
199  G4double sinx = sint*std::sin(phi);
200  G4double siny = sint*std::cos(phi);
201  G4ThreeVector findir = cost*dir+sinx*ortx+siny*orty;
202  theParticleChange.SetMomentumChange(findir); // change lepton direction
203 
204  // Create a gamma with momentum equal to momentum transfer
205  G4ThreeVector photonMomentum = iniP*dir - finP*findir;
207  photonEnergy, photonMomentum);
208  return gamma;
209 }
210 
211 
212 void
213 G4ElectroVDNuclearModel::CalculateHadronicVertex(G4DynamicParticle* incident,
214  G4Nucleus& target)
215 {
216  G4HadFinalState* hfs = 0;
217  G4double gammaE = incident->GetTotalEnergy();
218 
219  if (gammaE < 10*GeV) {
220  G4HadProjectile projectile(*incident);
221  hfs = bert->ApplyYourself(projectile, target);
222  } else {
223  // At high energies convert incident gamma to a pion
225  G4double piMom = std::sqrt(gammaE*gammaE - piMass*piMass);
226  G4ThreeVector piMomentum(incident->GetMomentumDirection() );
227  piMomentum *= piMom;
228  G4DynamicParticle theHadron(G4PionZero::PionZero(), piMomentum);
229  G4HadProjectile projectile(theHadron);
230  hfs = ftfp->ApplyYourself(projectile, target);
231  }
232 
233  delete incident;
234 
235  // Copy secondaries from sub-model to model
237 }
238