Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4AntiProtonAnnihilationAtRest.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // G4AntiProtonAnnihilationAtRest physics process
27 // Larry Felawka (TRIUMF), April 1998
28 //---------------------------------------------------------------------
29 
30 #include <string.h>
31 #include <cmath>
32 #include <stdio.h>
33 
35 #include "G4SystemOfUnits.hh"
36 #include "G4DynamicParticle.hh"
37 #include "G4ParticleTypes.hh"
38 #include "Randomize.hh"
40 #include "G4HadronicDeprecate.hh"
41 
42 #define MAX_SECONDARIES 100
43 
44 // constructor
45 
46 G4AntiProtonAnnihilationAtRest::G4AntiProtonAnnihilationAtRest(const G4String& processName,
47  G4ProcessType aType ) :
48  G4VRestProcess (processName, aType), // initialization
49  massPionMinus(G4PionMinus::PionMinus()->GetPDGMass()/GeV),
50  massProton(G4Proton::Proton()->GetPDGMass()/GeV),
51  massPionZero(G4PionZero::PionZero()->GetPDGMass()/GeV),
52  massAntiProton(G4AntiProton::AntiProton()->GetPDGMass()/GeV),
53  massPionPlus(G4PionPlus::PionPlus()->GetPDGMass()/GeV),
54  massGamma(G4Gamma::Gamma()->GetPDGMass()/GeV),
55  pdefGamma(G4Gamma::Gamma()),
56  pdefPionPlus(G4PionPlus::PionPlus()),
57  pdefPionZero(G4PionZero::PionZero()),
58  pdefPionMinus(G4PionMinus::PionMinus()),
59  pdefProton(G4Proton::Proton()),
60  pdefAntiProton(G4AntiProton::AntiProton()),
61  pdefNeutron(G4Neutron::Neutron()),
62  pdefDeuteron(G4Deuteron::Deuteron()),
63  pdefTriton(G4Triton::Triton()),
64  pdefAlpha(G4Alpha::Alpha())
65 {
66  G4HadronicDeprecate("G4AntiProtonAnnihilationAtRest");
67  if (verboseLevel>0) {
68  G4cout << GetProcessName() << " is created "<< G4endl;
69  }
74 
76 }
77 
78 // destructor
79 
81 {
83  delete [] pv;
84  delete [] eve;
85  delete [] gkin;
86 }
87 
89 {
91 }
92 
94 {
96 }
97 
98 // methods.............................................................................
99 
101  const G4ParticleDefinition& particle
102  )
103 {
104  return ( &particle == pdefAntiProton );
105 
106 }
107 
108 // Warning - this method may be optimized away if made "inline"
110 {
111  return ( ngkine );
112 
113 }
114 
115 // Warning - this method may be optimized away if made "inline"
117 {
118  return ( &gkin[0] );
119 
120 }
121 
123  const G4Track& track,
125  )
126 {
127  // beggining of tracking
129 
130  // condition is set to "Not Forced"
131  *condition = NotForced;
132 
133  // get mean life time
134  currentInteractionLength = GetMeanLifeTime(track, condition);
135 
136  if ((currentInteractionLength <0.0) || (verboseLevel>2)){
137  G4cout << "G4AntiProtonAnnihilationAtRestProcess::AtRestGetPhysicalInteractionLength ";
138  G4cout << "[ " << GetProcessName() << "]" <<G4endl;
139  track.GetDynamicParticle()->DumpInfo();
140  G4cout << " in Material " << track.GetMaterial()->GetName() <<G4endl;
141  G4cout << "MeanLifeTime = " << currentInteractionLength/ns << "[ns]" <<G4endl;
142  }
143 
145 
146 }
147 
149  const G4Track& track,
150  const G4Step&
151  )
152 //
153 // Handles AntiProtons at rest; a AntiProton can either create secondaries or
154 // do nothing (in which case it should be sent back to decay-handling
155 // section
156 //
157 {
158 
159 // Initialize ParticleChange
160 // all members of G4VParticleChange are set to equal to
161 // corresponding member in G4Track
162 
164 
165 // Store some global quantities that depend on current material and particle
166 
167  globalTime = track.GetGlobalTime()/s;
168  G4Material * aMaterial = track.GetMaterial();
169  const G4int numberOfElements = aMaterial->GetNumberOfElements();
170  const G4ElementVector* theElementVector = aMaterial->GetElementVector();
171 
172  const G4double* theAtomicNumberDensity = aMaterial->GetAtomicNumDensityVector();
173  G4double normalization = 0;
174  for ( G4int i1=0; i1 < numberOfElements; i1++ )
175  {
176  normalization += theAtomicNumberDensity[i1] ; // change when nucleon specific
177  // probabilities are included.
178  }
179  G4double runningSum= 0.;
180  G4double random = G4UniformRand()*normalization;
181  for ( G4int i2=0; i2 < numberOfElements; i2++ )
182  {
183  runningSum += theAtomicNumberDensity[i2]; // change when nucleon specific
184  // probabilities are included.
185  if (random<=runningSum)
186  {
187  targetCharge = G4double((*theElementVector)[i2]->GetZ());
188  targetAtomicMass = (*theElementVector)[i2]->GetN();
189  }
190  }
191  if (random>runningSum)
192  {
193  targetCharge = G4double((*theElementVector)[numberOfElements-1]->GetZ());
194  targetAtomicMass = (*theElementVector)[numberOfElements-1]->GetN();
195 
196  }
197 
198  if (verboseLevel>1) {
199  G4cout << "G4AntiProtonAnnihilationAtRest::AtRestDoIt is invoked " <<G4endl;
200  }
201 
202  G4ParticleMomentum momentum;
203  G4float localtime;
204 
206 
207  GenerateSecondaries(); // Generate secondaries
208 
210 
211  for ( G4int isec = 0; isec < ngkine; isec++ ) {
212  G4DynamicParticle* aNewParticle = new G4DynamicParticle;
213  aNewParticle->SetDefinition( gkin[isec].GetParticleDef() );
214  aNewParticle->SetMomentum( gkin[isec].GetMomentum() * GeV );
215 
216  localtime = globalTime + gkin[isec].GetTOF();
217 
218  G4Track* aNewTrack = new G4Track( aNewParticle, localtime*s, position );
219  aNewTrack->SetTouchableHandle(track.GetTouchableHandle());
220  aParticleChange.AddSecondary( aNewTrack );
221 
222  }
223 
225 
226  aParticleChange.ProposeTrackStatus(fStopAndKill); // Kill the incident AntiProton
227 
228 // clear InteractionLengthLeft
229 
231 
232  return &aParticleChange;
233 
234 }
235 
236 
237 void G4AntiProtonAnnihilationAtRest::GenerateSecondaries()
238 {
239  static G4int index;
240  static G4int l;
241  static G4int nopt;
242  static G4int i;
243  // DHW 15 May 2011: unused: static G4ParticleDefinition* jnd;
244 
245  for (i = 1; i <= MAX_SECONDARIES; ++i) {
246  pv[i].SetZero();
247  }
248 
249  ngkine = 0; // number of generated secondary particles
250  ntot = 0;
251  result.SetZero();
252  result.SetMass( massAntiProton );
253  result.SetKineticEnergyAndUpdate( 0. );
254  result.SetTOF( 0. );
255  result.SetParticleDef( pdefAntiProton );
256 
257  AntiProtonAnnihilation(&nopt);
258 
259  // *** CHECK WHETHER THERE ARE NEW PARTICLES GENERATED ***
260  if (ntot != 0 || result.GetParticleDef() != pdefAntiProton) {
261  // *** CURRENT PARTICLE IS NOT THE SAME AS IN THE BEGINNING OR/AND ***
262  // *** ONE OR MORE SECONDARIES HAVE BEEN GENERATED ***
263 
264  // --- INITIAL PARTICLE TYPE HAS BEEN CHANGED ==> PUT NEW TYPE ON ---
265  // --- THE GEANT TEMPORARY STACK ---
266 
267  // --- PUT PARTICLE ON THE STACK ---
268  gkin[0] = result;
269  gkin[0].SetTOF( result.GetTOF() * 5e-11 );
270  ngkine = 1;
271 
272  // --- ALL QUANTITIES ARE TAKEN FROM THE GHEISHA STACK WHERE THE ---
273  // --- CONVENTION IS THE FOLLOWING ---
274 
275  // --- ONE OR MORE SECONDARIES HAVE BEEN GENERATED ---
276  for (l = 1; l <= ntot; ++l) {
277  index = l - 1;
278  // DHW 15 May 2011: unused: jnd = eve[index].GetParticleDef();
279 
280  // --- ADD PARTICLE TO THE STACK IF STACK NOT YET FULL ---
281  if (ngkine < MAX_SECONDARIES) {
282  gkin[ngkine] = eve[index];
283  gkin[ngkine].SetTOF( eve[index].GetTOF() * 5e-11 );
284  ++ngkine;
285  }
286  }
287  }
288  else {
289  // --- NO SECONDARIES GENERATED AND PARTICLE IS STILL THE SAME ---
290  // --- ==> COPY EVERYTHING BACK IN THE CURRENT GEANT STACK ---
291  ngkine = 0;
292  ntot = 0;
293  globalTime += result.GetTOF() * G4float(5e-11);
294  }
295 
296  // --- LIMIT THE VALUE OF NGKINE IN CASE OF OVERFLOW ---
297  ngkine = G4int(std::min(ngkine,G4int(MAX_SECONDARIES)));
298 
299 } // GenerateSecondaries
300 
301 
302 void G4AntiProtonAnnihilationAtRest::Poisso(G4float xav, G4int *iran)
303 {
304  static G4int i;
305  static G4float r, p1, p2, p3;
306  static G4int fivex;
307  static G4float rr, ran, rrr, ran1;
308 
309  // *** GENERATION OF POISSON DISTRIBUTION ***
310  // *** NVE 16-MAR-1988 CERN GENEVA ***
311  // ORIGIN : H.FESEFELDT (27-OCT-1983)
312 
313  // --- USE NORMAL DISTRIBUTION FOR <X> > 9.9 ---
314  if (xav > G4float(9.9)) {
315  // ** NORMAL DISTRIBUTION WITH SIGMA**2 = <X>
316  Normal(&ran1);
317  ran1 = xav + ran1 * std::sqrt(xav);
318  *iran = G4int(ran1);
319  if (*iran < 0) {
320  *iran = 0;
321  }
322  }
323  else {
324  fivex = G4int(xav * G4float(5.));
325  *iran = 0;
326  if (fivex > 0) {
327  r = std::exp(-G4double(xav));
328  ran1 = G4UniformRand();
329  if (ran1 > r) {
330  rr = r;
331  for (i = 1; i <= fivex; ++i) {
332  ++(*iran);
333  if (i <= 5) {
334  rrr = std::pow(xav, G4float(i)) / NFac(i);
335  }
336  // ** STIRLING' S FORMULA FOR LARGE NUMBERS
337  if (i > 5) {
338  rrr = std::exp(i * std::log(xav) -
339  (i + G4float(.5)) * std::log(i * G4float(1.)) +
340  i - G4float(.9189385));
341  }
342  rr += r * rrr;
343  if (ran1 <= rr) {
344  break;
345  }
346  }
347  }
348  }
349  else {
350  // ** FOR VERY SMALL XAV TRY IRAN=1,2,3
351  p1 = xav * std::exp(-G4double(xav));
352  p2 = xav * p1 / G4float(2.);
353  p3 = xav * p2 / G4float(3.);
354  ran = G4UniformRand();
355  if (ran >= p3) {
356  if (ran >= p2) {
357  if (ran >= p1) {
358  *iran = 0;
359  }
360  else {
361  *iran = 1;
362  }
363  }
364  else {
365  *iran = 2;
366  }
367  }
368  else {
369  *iran = 3;
370  }
371  }
372  }
373 
374 } // Poisso
375 
376 
377 G4int G4AntiProtonAnnihilationAtRest::NFac(G4int n)
378 {
379  G4int ret_val;
380 
381  static G4int i, j;
382 
383  // *** NVE 16-MAR-1988 CERN GENEVA ***
384  // ORIGIN : H.FESEFELDT (27-OCT-1983)
385 
386  ret_val = 1;
387  j = n;
388  if (j > 1) {
389  if (j > 10) {
390  j = 10;
391  }
392  for (i = 2; i <= j; ++i) {
393  ret_val *= i;
394  }
395  }
396  return ret_val;
397 
398 } // NFac
399 
400 
401 void G4AntiProtonAnnihilationAtRest::Normal(G4float *ran)
402 {
403  static G4int i;
404 
405  // *** NVE 14-APR-1988 CERN GENEVA ***
406  // ORIGIN : H.FESEFELDT (27-OCT-1983)
407 
408  *ran = G4float(-6.);
409  for (i = 1; i <= 12; ++i) {
410  *ran += G4UniformRand();
411  }
412 
413 } // Normal
414 
415 
416 void G4AntiProtonAnnihilationAtRest::AntiProtonAnnihilation(G4int *nopt)
417 {
418  static G4float brr[3] = { G4float(.125),G4float(.25),G4float(.5) };
419 
420  G4float r__1;
421 
422  static G4int i, ii, kk;
423  static G4int nt;
424  static G4float cfa, eka;
425  static G4int ika, nbl;
426  static G4float ran, pcm;
427  static G4int isw;
428  static G4float tex;
429  static G4ParticleDefinition* ipa1;
430  static G4float ran1, ran2, ekin, tkin;
431  static G4float targ;
432  static G4ParticleDefinition* inve;
433  static G4float ekin1, ekin2, black;
434  static G4float pnrat, rmnve1, rmnve2;
435  static G4float ek, en;
436 
437  // *** ANTI PROTON ANNIHILATION AT REST ***
438  // *** NVE 04-MAR-1988 CERN GENEVA ***
439  // ORIGIN : H.FESEFELDT (09-JULY-1987)
440 
441  // NOPT=0 NO ANNIHILATION
442  // NOPT=1 ANNIH.IN PI+ PI-
443  // NOPT=2 ANNIH.IN PI0 PI0
444  // NOPT=3 ANNIH.IN PI- PI0
445  // NOPT=4 ANNIH.IN GAMMA GAMMA
446 
447  pv[1].SetZero();
448  pv[1].SetMass( massAntiProton );
449  pv[1].SetKineticEnergyAndUpdate( 0. );
450  pv[1].SetTOF( result.GetTOF() );
451  pv[1].SetParticleDef( result.GetParticleDef() );
452  isw = 1;
453  ran = G4UniformRand();
454  if (ran > brr[0]) {
455  isw = 2;
456  }
457  if (ran > brr[1]) {
458  isw = 3;
459  }
460  if (ran > brr[2]) {
461  isw = 4;
462  }
463  *nopt = isw;
464  // **
465  // ** EVAPORATION
466  // **
467  if (isw == 1) {
468  rmnve1 = massPionPlus;
469  rmnve2 = massPionMinus;
470  }
471  else if (isw == 2) {
472  rmnve1 = massPionZero;
473  rmnve2 = massPionZero;
474  }
475  else if (isw == 3) {
476  rmnve1 = massPionMinus;
477  rmnve2 = massPionZero;
478  }
479  else if (isw == 4) {
480  rmnve1 = massGamma;
481  rmnve2 = massGamma;
482  }
483  ek = massProton + massAntiProton - rmnve1 - rmnve2;
484  tkin = ExNu(ek);
485  ek -= tkin;
486  if (ek < G4float(1e-4)) {
487  ek = G4float(1e-4);
488  }
489  ek *= G4float(.5);
490  en = ek + (rmnve1 + rmnve2) * G4float(.5);
491  r__1 = en * en - rmnve1 * rmnve2;
492  pcm = r__1 > 0 ? std::sqrt(r__1) : 0;
493  pv[2].SetZero();
494  pv[2].SetMass( rmnve1 );
495  pv[3].SetZero();
496  pv[3].SetMass( rmnve2 );
497  if (isw > 3) {
498  pv[2].SetMass( 0. );
499  pv[3].SetMass( 0. );
500  }
501  pv[2].SetEnergyAndUpdate( std::sqrt(pv[2].GetMass()*pv[2].GetMass()+pcm*pcm) );
502  pv[2].SetTOF( result.GetTOF() );
503  pv[3].SetEnergy( std::sqrt(pv[3].GetMass()*pv[3].GetMass()+pcm*pcm) );
504  pv[3].SetMomentumAndUpdate( -pv[2].GetMomentum().x(), -pv[2].GetMomentum().y(), -pv[2].GetMomentum().z() );
505  pv[3].SetTOF( result.GetTOF() );
506  switch ((int)isw) {
507  case 1:
508  pv[2].SetParticleDef( pdefPionPlus );
509  pv[3].SetParticleDef( pdefPionMinus );
510  break;
511  case 2:
512  pv[2].SetParticleDef( pdefPionZero );
513  pv[3].SetParticleDef( pdefPionZero );
514  break;
515  case 3:
516  pv[2].SetParticleDef( pdefPionMinus );
517  pv[3].SetParticleDef( pdefPionZero );
518  break;
519  case 4:
520  pv[2].SetParticleDef( pdefGamma );
521  pv[3].SetParticleDef( pdefGamma );
522  break;
523  default:
524  break;
525  }
526  nt = 3;
527  if (targetAtomicMass >= G4float(1.5)) {
528  cfa = (targetAtomicMass - G4float(1.)) /
529  G4float(120.) * G4float(.025) *
530  std::exp(-G4double(targetAtomicMass - G4float(1.)) / G4float(120.));
531  targ = G4float(1.);
532  tex = evapEnergy1;
533  if (tex >= G4float(.001)) {
534  black = (targ * G4float(1.25) +
535  G4float(1.5)) * evapEnergy1 / (evapEnergy1 + evapEnergy3);
536  Poisso(black, &nbl);
537  if (G4float(G4int(targ) + nbl) > targetAtomicMass) {
538  nbl = G4int(targetAtomicMass - targ);
539  }
540  if (nt + nbl > (MAX_SECONDARIES - 2)) {
541  nbl = (MAX_SECONDARIES - 2) - nt;
542  }
543  if (nbl > 0) {
544  ekin = tex / nbl;
545  ekin2 = G4float(0.);
546  for (i = 1; i <= nbl; ++i) {
547  if (nt == (MAX_SECONDARIES - 2)) {
548  continue;
549  }
550  if (ekin2 > tex) {
551  break;
552  }
553  ran1 = G4UniformRand();
554  Normal(&ran2);
555  ekin1 = -G4double(ekin) * std::log(ran1) -
556  cfa * (ran2 * G4float(.5) + G4float(1.));
557  if (ekin1 < G4float(0.)) {
558  ekin1 = std::log(ran1) * G4float(-.01);
559  }
560  ekin1 *= G4float(1.);
561  ekin2 += ekin1;
562  if (ekin2 > tex) {
563  ekin1 = tex - (ekin2 - ekin1);
564  }
565  if (ekin1 < G4float(0.)) {
566  ekin1 = G4float(.001);
567  }
568  ipa1 = pdefNeutron;
569  pnrat = G4float(1.) - targetCharge / targetAtomicMass;
570  if (G4UniformRand() > pnrat) {
571  ipa1 = pdefProton;
572  }
573  ++nt;
574  pv[nt].SetZero();
575  pv[nt].SetMass( ipa1->GetPDGMass()/GeV );
576  pv[nt].SetKineticEnergyAndUpdate( ekin1 );
577  pv[nt].SetTOF( result.GetTOF() );
578  pv[nt].SetParticleDef( ipa1 );
579  }
580  if (targetAtomicMass >= G4float(230.) && ek <= G4float(2.)) {
581  ii = nt + 1;
582  kk = 0;
583  eka = ek;
584  if (eka > G4float(1.)) {
585  eka *= eka;
586  }
587  if (eka < G4float(.1)) {
588  eka = G4float(.1);
589  }
590  ika = G4int(G4float(3.6) / eka);
591  for (i = 1; i <= nt; ++i) {
592  --ii;
593  if (pv[ii].GetParticleDef() != pdefProton) {
594  continue;
595  }
596  ipa1 = pdefNeutron;
597  pv[ii].SetMass( ipa1->GetPDGMass()/GeV );
598  pv[ii].SetParticleDef( ipa1 );
599  ++kk;
600  if (kk > ika) {
601  break;
602  }
603  }
604  }
605  }
606  }
607  // **
608  // ** THEN ALSO DEUTERONS, TRITONS AND ALPHAS
609  // **
610  tex = evapEnergy3;
611  if (tex >= G4float(.001)) {
612  black = (targ * G4float(1.25) + G4float(1.5)) * evapEnergy3 /
613  (evapEnergy1 + evapEnergy3);
614  Poisso(black, &nbl);
615  if (nt + nbl > (MAX_SECONDARIES - 2)) {
616  nbl = (MAX_SECONDARIES - 2) - nt;
617  }
618  if (nbl > 0) {
619  ekin = tex / nbl;
620  ekin2 = G4float(0.);
621  for (i = 1; i <= nbl; ++i) {
622  if (nt == (MAX_SECONDARIES - 2)) {
623  continue;
624  }
625  if (ekin2 > tex) {
626  break;
627  }
628  ran1 = G4UniformRand();
629  Normal(&ran2);
630  ekin1 = -G4double(ekin) * std::log(ran1) -
631  cfa * (ran2 * G4float(.5) + G4float(1.));
632  if (ekin1 < G4float(0.)) {
633  ekin1 = std::log(ran1) * G4float(-.01);
634  }
635  ekin1 *= G4float(1.);
636  ekin2 += ekin1;
637  if (ekin2 > tex) {
638  ekin1 = tex - (ekin2 - ekin1);
639  }
640  if (ekin1 < G4float(0.)) {
641  ekin1 = G4float(.001);
642  }
643  ran = G4UniformRand();
644  inve = pdefDeuteron;
645  if (ran > G4float(.6)) {
646  inve = pdefTriton;
647  }
648  if (ran > G4float(.9)) {
649  inve = pdefAlpha;
650  }
651  ++nt;
652  pv[nt].SetZero();
653  pv[nt].SetMass( inve->GetPDGMass()/GeV );
654  pv[nt].SetKineticEnergyAndUpdate( ekin1 );
655  pv[nt].SetTOF( result.GetTOF() );
656  pv[nt].SetParticleDef( inve );
657  }
658  }
659  }
660  }
661  result = pv[2];
662  if (nt == 2) {
663  return;
664  }
665  for (i = 3; i <= nt; ++i) {
666  if (ntot >= MAX_SECONDARIES) {
667  return;
668  }
669  eve[ntot++] = pv[i];
670  }
671 
672 } // AntiProtonAnnihilation
673 
674 
675 G4double G4AntiProtonAnnihilationAtRest::ExNu(G4float ek1)
676 {
677  G4float ret_val, r__1;
678 
679  static G4float cfa, gfa, ran1, ran2, ekin1, atno3;
680  static G4int magic;
681  static G4float fpdiv;
682 
683  // *** NUCLEAR EVAPORATION AS FUNCTION OF ATOMIC NUMBER ATNO ***
684  // *** AND KINETIC ENERGY EKIN OF PRIMARY PARTICLE ***
685  // *** NVE 04-MAR-1988 CERN GENEVA ***
686  // ORIGIN : H.FESEFELDT (10-DEC-1986)
687 
688  ret_val = G4float(0.);
689  if (targetAtomicMass >= G4float(1.5)) {
690  magic = 0;
691  if (G4int(targetCharge + G4float(.1)) == 82) {
692  magic = 1;
693  }
694  ekin1 = ek1;
695  if (ekin1 < G4float(.1)) {
696  ekin1 = G4float(.1);
697  }
698  if (ekin1 > G4float(4.)) {
699  ekin1 = G4float(4.);
700  }
701  // ** 0.35 VALUE AT 1 GEV
702  // ** 0.05 VALUE AT 0.1 GEV
703  cfa = G4float(.13043478260869565);
704  cfa = cfa * std::log(ekin1) + G4float(.35);
705  if (cfa < G4float(.15)) {
706  cfa = G4float(.15);
707  }
708  ret_val = cfa * G4float(7.716) * std::exp(-G4double(cfa));
709  atno3 = targetAtomicMass;
710  if (atno3 > G4float(120.)) {
711  atno3 = G4float(120.);
712  }
713  cfa = (atno3 - G4float(1.)) /
714  G4float(120.) * std::exp(-G4double(atno3 - G4float(1.)) / G4float(120.));
715  ret_val *= cfa;
716  r__1 = ekin1;
717  fpdiv = G4float(1.) - r__1 * r__1 * G4float(.25);
718  if (fpdiv < G4float(.5)) {
719  fpdiv = G4float(.5);
720  }
721  gfa = (targetAtomicMass - G4float(1.)) /
722  G4float(70.) * G4float(2.) *
723  std::exp(-G4double(targetAtomicMass - G4float(1.)) / G4float(70.));
724  evapEnergy1 = ret_val * fpdiv;
725  evapEnergy3 = ret_val - evapEnergy1;
726  Normal(&ran1);
727  Normal(&ran2);
728  if (magic == 1) {
729  ran1 = G4float(0.);
730  ran2 = G4float(0.);
731  }
732  evapEnergy1 *= ran1 * gfa + G4float(1.);
733  if (evapEnergy1 < G4float(0.)) {
734  evapEnergy1 = G4float(0.);
735  }
736  evapEnergy3 *= ran2 * gfa + G4float(1.);
737  if (evapEnergy3 < G4float(0.)) {
738  evapEnergy3 = G4float(0.);
739  }
740  while ((ret_val = evapEnergy1 + evapEnergy3) >= ek1) {
741  evapEnergy1 *= G4float(1.) - G4UniformRand() * G4float(.5);
742  evapEnergy3 *= G4float(1.) - G4UniformRand() * G4float(.5);
743  }
744  }
745  return ret_val;
746 
747 } // ExNu