Geant4  10.03
G4CutTubs.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4CutTubs.cc 101121 2016-11-07 09:18:01Z gcosmo $
28 //
29 //
30 // class G4CutTubs
31 //
32 // History:
33 //
34 // 30.10.16 E.Tcherniaev - reimplemented CalculateExtent(),
35 // added Extent, removed CreateRotatedVetices()
36 // 05.04.12 M.Kelsey - GetPointOnSurface() throw flat in sqrt(r)
37 // 01.06.11 T.Nikitina - Derived from G4Tubs
38 //
40 
41 #include "G4CutTubs.hh"
42 
43 #include "G4GeomTools.hh"
44 #include "G4VoxelLimits.hh"
45 #include "G4AffineTransform.hh"
46 #include "G4BoundingEnvelope.hh"
47 #include "G4GeometryTolerance.hh"
48 
49 #include "G4VPVParameterisation.hh"
50 
51 #include "Randomize.hh"
52 
53 #include "meshdefs.hh"
54 
55 #include "G4VGraphicsScene.hh"
56 #include "G4Polyhedron.hh"
57 
58 using namespace CLHEP;
59 
61 //
62 // Constructor - check parameters, convert angles so 0<sphi+dpshi<=2_PI
63 // - note if pdphi>2PI then reset to 2PI
64 
66  G4double pRMin, G4double pRMax,
67  G4double pDz,
68  G4double pSPhi, G4double pDPhi,
69  G4ThreeVector pLowNorm,G4ThreeVector pHighNorm )
70  : G4OTubs(pName, pRMin, pRMax, pDz, pSPhi, pDPhi),
71  fPhiFullCutTube(true)
72 {
75 
79 
80  // Check on Cutted Planes Normals
81  // If there is NO CUT, propose to use G4Tubs instead
82  //
83  if(pDPhi<twopi) { fPhiFullCutTube=false; }
84 
85  if ( ( !pLowNorm.x()) && ( !pLowNorm.y())
86  && ( !pHighNorm.x()) && (!pHighNorm.y()) )
87  {
88  std::ostringstream message;
89  message << "Inexisting Low/High Normal to Z plane or Parallel to Z."
90  << G4endl
91  << "Normals to Z plane are (" << pLowNorm <<" and "
92  << pHighNorm << ") in solid: " << GetName();
93  G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids1001",
94  JustWarning, message, "Should use G4Tubs!");
95  }
96 
97  // If Normal is (0,0,0),means parallel to R, give it value of (0,0,+/-1)
98  //
99  if (pLowNorm.mag2() == 0.) { pLowNorm.setZ(-1.); }
100  if (pHighNorm.mag2()== 0.) { pHighNorm.setZ(1.); }
101 
102  // Given Normals to Cut Planes have to be an unit vectors.
103  // Normalize if it is needed.
104  //
105  if (pLowNorm.mag2() != 1.) { pLowNorm = pLowNorm.unit(); }
106  if (pHighNorm.mag2()!= 1.) { pHighNorm = pHighNorm.unit(); }
107 
108  // Normals to cutted planes have to point outside Solid
109  //
110  if( (pLowNorm.mag2() != 0.) && (pHighNorm.mag2()!= 0. ) )
111  {
112  if( ( pLowNorm.z()>= 0. ) || ( pHighNorm.z() <= 0.))
113  {
114  std::ostringstream message;
115  message << "Invalid Low or High Normal to Z plane; "
116  "has to point outside Solid." << G4endl
117  << "Invalid Norm to Z plane (" << pLowNorm << " or "
118  << pHighNorm << ") in solid: " << GetName();
119  G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids0002",
120  FatalException, message);
121  }
122  }
123  fLowNorm = pLowNorm;
124  fHighNorm = pHighNorm;
125 
126  // Check Intersection of cut planes. They MUST NOT Intersect
127  //
128  // This check has been disabled as too strict.
129  // See problem report #1887
130  //
131  // if(IsCrossingCutPlanes())
132  // {
133  // std::ostringstream message;
134  // message << "Invalid Low or High Normal to Z plane; "
135  // << "Crossing Cutted Planes." << G4endl
136  // << "Invalid Norm to Z plane (" << pLowNorm << " and "
137  // << pHighNorm << ") in solid: " << GetName();
138  // G4Exception("G4CutTubs::G4CutTubs()", "GeomSolids0002",
139  // FatalException, message);
140  // }
141 }
142 
144 //
145 // Fake default constructor - sets only member data and allocates memory
146 // for usage restricted to object persistency.
147 //
149  : G4OTubs(a), fLowNorm(G4ThreeVector()),
150  fHighNorm(G4ThreeVector()), fPhiFullCutTube(false),
151  halfCarTolerance(0.), halfRadTolerance(0.), halfAngTolerance(0.)
152 {
153 }
154 
156 //
157 // Destructor
158 
160 {
161 }
162 
164 //
165 // Copy constructor
166 
168  : G4OTubs(rhs), fLowNorm(rhs.fLowNorm), fHighNorm(rhs.fHighNorm),
169  fPhiFullCutTube(rhs.fPhiFullCutTube),
170  halfCarTolerance(rhs.halfCarTolerance),
171  halfRadTolerance(rhs.halfRadTolerance),
172  halfAngTolerance(rhs.halfAngTolerance)
173 {
174 }
175 
177 //
178 // Assignment operator
179 
181 {
182  // Check assignment to self
183  //
184  if (this == &rhs) { return *this; }
185 
186  // Copy base class data
187  //
188  G4OTubs::operator=(rhs);
189 
190  // Copy data
191  //
192  fLowNorm = rhs.fLowNorm; fHighNorm = rhs.fHighNorm;
197 
198  return *this;
199 }
200 
202 //
203 // Get bounding box
204 
206 {
207  G4double rmin = GetInnerRadius();
208  G4double rmax = GetOuterRadius();
209  G4double dz = GetZHalfLength();
210 
211  G4ThreeVector norm;
212  G4double xynorm, znorm;
213 
214  // get zmin
215  norm = GetLowNorm();
216  xynorm = std::sqrt(norm.x()*norm.x()+norm.y()*norm.y());
217  znorm = std::abs(norm.z());
218  G4double zmin = -(dz + rmax*xynorm/znorm);
219 
220  // get zmax
221  norm = GetHighNorm();
222  xynorm = std::sqrt(norm.x()*norm.x()+norm.y()*norm.y());
223  znorm = std::abs(norm.z());
224  G4double zmax = dz + rmax*xynorm/znorm;
225 
226  // Find bounding box
227  //
228  if (GetDeltaPhiAngle() < twopi)
229  {
230  G4TwoVector vmin,vmax;
231  G4GeomTools::DiskExtent(rmin,rmax,
234  vmin,vmax);
235  pMin.set(vmin.x(),vmin.y(), zmin);
236  pMax.set(vmax.x(),vmax.y(), zmax);
237  }
238  else
239  {
240  pMin.set(-rmax,-rmax, zmin);
241  pMax.set( rmax, rmax, zmax);
242  }
243 
244  // Check correctness of the bounding box
245  //
246  if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
247  {
248  std::ostringstream message;
249  message << "Bad bounding box (min >= max) for solid: "
250  << GetName() << " !"
251  << "\npMin = " << pMin
252  << "\npMax = " << pMax;
253  G4Exception("G4CutTubs::Extent()", "GeomMgt0001", JustWarning, message);
254  DumpInfo();
255  }
256 }
257 
259 //
260 // Calculate extent under transform and specified limit
261 
263  const G4VoxelLimits& pVoxelLimit,
264  const G4AffineTransform& pTransform,
265  G4double& pMin,
266  G4double& pMax ) const
267 {
268  G4ThreeVector bmin, bmax;
269  G4bool exist;
270 
271  // Get bounding box
272  Extent(bmin,bmax);
273 
274  // Check bounding box
275  G4BoundingEnvelope bbox(bmin,bmax);
276 #ifdef G4BBOX_EXTENT
277  if (true) return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
278 #endif
279  if (bbox.BoundingBoxVsVoxelLimits(pAxis,pVoxelLimit,pTransform,pMin,pMax))
280  {
281  return exist = (pMin < pMax) ? true : false;
282  }
283 
284  // Get parameters of the solid
285  G4double rmin = GetInnerRadius();
286  G4double rmax = GetOuterRadius();
287  G4double dphi = GetDeltaPhiAngle();
288  G4double zmin = bmin.z();
289  G4double zmax = bmax.z();
290 
291  // Find bounding envelope and calculate extent
292  //
293  const G4int NSTEPS = 24; // number of steps for whole circle
294  G4double astep = (360/NSTEPS)*deg; // max angle for one step
295  G4int ksteps = (dphi <= astep) ? 1 : (G4int)((dphi-deg)/astep) + 1;
296  G4double ang = dphi/ksteps;
297 
298  G4double sinHalf = std::sin(0.5*ang);
299  G4double cosHalf = std::cos(0.5*ang);
300  G4double sinStep = 2.*sinHalf*cosHalf;
301  G4double cosStep = 1. - 2.*sinHalf*sinHalf;
302  G4double rext = rmax/cosHalf;
303 
304  // bounding envelope for full cylinder consists of two polygons,
305  // in other cases it is a sequence of quadrilaterals
306  if (rmin == 0 && dphi == twopi)
307  {
308  G4double sinCur = sinHalf;
309  G4double cosCur = cosHalf;
310 
311  G4ThreeVectorList baseA(NSTEPS),baseB(NSTEPS);
312  for (G4int k=0; k<NSTEPS; ++k)
313  {
314  baseA[k].set(rext*cosCur,rext*sinCur,zmin);
315  baseB[k].set(rext*cosCur,rext*sinCur,zmax);
316 
317  G4double sinTmp = sinCur;
318  sinCur = sinCur*cosStep + cosCur*sinStep;
319  cosCur = cosCur*cosStep - sinTmp*sinStep;
320  }
321  std::vector<const G4ThreeVectorList *> polygons(2);
322  polygons[0] = &baseA;
323  polygons[1] = &baseB;
324  G4BoundingEnvelope benv(bmin,bmax,polygons);
325  exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
326  }
327  else
328  {
329  G4double sinStart = GetSinStartPhi();
330  G4double cosStart = GetCosStartPhi();
331  G4double sinEnd = GetSinEndPhi();
332  G4double cosEnd = GetCosEndPhi();
333  G4double sinCur = sinStart*cosHalf + cosStart*sinHalf;
334  G4double cosCur = cosStart*cosHalf - sinStart*sinHalf;
335 
336  // set quadrilaterals
337  G4ThreeVectorList pols[NSTEPS+2];
338  for (G4int k=0; k<ksteps+2; ++k) pols[k].resize(4);
339  pols[0][0].set(rmin*cosStart,rmin*sinStart,zmax);
340  pols[0][1].set(rmin*cosStart,rmin*sinStart,zmin);
341  pols[0][2].set(rmax*cosStart,rmax*sinStart,zmin);
342  pols[0][3].set(rmax*cosStart,rmax*sinStart,zmax);
343  for (G4int k=1; k<ksteps+1; ++k)
344  {
345  pols[k][0].set(rmin*cosCur,rmin*sinCur,zmax);
346  pols[k][1].set(rmin*cosCur,rmin*sinCur,zmin);
347  pols[k][2].set(rext*cosCur,rext*sinCur,zmin);
348  pols[k][3].set(rext*cosCur,rext*sinCur,zmax);
349 
350  G4double sinTmp = sinCur;
351  sinCur = sinCur*cosStep + cosCur*sinStep;
352  cosCur = cosCur*cosStep - sinTmp*sinStep;
353  }
354  pols[ksteps+1][0].set(rmin*cosEnd,rmin*sinEnd,zmax);
355  pols[ksteps+1][1].set(rmin*cosEnd,rmin*sinEnd,zmin);
356  pols[ksteps+1][2].set(rmax*cosEnd,rmax*sinEnd,zmin);
357  pols[ksteps+1][3].set(rmax*cosEnd,rmax*sinEnd,zmax);
358 
359  // set envelope and calculate extent
360  std::vector<const G4ThreeVectorList *> polygons;
361  polygons.resize(ksteps+2);
362  for (G4int k=0; k<ksteps+2; ++k) polygons[k] = &pols[k];
363  G4BoundingEnvelope benv(bmin,bmax,polygons);
364  exist = benv.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
365  }
366  return exist;
367 }
368 
370 //
371 // Return whether point inside/outside/on surface
372 
374 {
375  G4double zinLow,zinHigh,r2,pPhi=0.;
376  G4double tolRMin,tolRMax;
378  EInside in = kInside;
379 
380  // Check if point is contained in the cut plane in -/+ Z
381 
382  // Check the lower cut plane
383  //
384  zinLow =(p+vZ).dot(fLowNorm);
385  if (zinLow>halfCarTolerance) { return kOutside; }
386 
387  // Check the higher cut plane
388  //
389  zinHigh = (p-vZ).dot(fHighNorm);
390  if (zinHigh>halfCarTolerance) { return kOutside; }
391 
392  // Check radius
393  //
394  r2 = p.x()*p.x() + p.y()*p.y() ;
395 
396  // First check 'generous' boundaries R+tolerance
397  //
398  tolRMin = fRMin - halfRadTolerance ;
399  tolRMax = fRMax + halfRadTolerance ;
400  if ( tolRMin < 0 ) { tolRMin = 0; }
401 
402  if ( ((r2 < tolRMin*tolRMin) || (r2 > tolRMax*tolRMax))
403  && (r2 >=halfRadTolerance*halfRadTolerance) ) { return kOutside; }
404 
405  // Check Phi
406  //
407  if(!fPhiFullCutTube)
408  {
409  // Try outer tolerant phi boundaries only
410 
411  if ( (tolRMin==0) && (std::fabs(p.x())<=halfCarTolerance)
412  && (std::fabs(p.y())<=halfCarTolerance) )
413  {
414  return kSurface;
415  }
416 
417  pPhi = std::atan2(p.y(),p.x()) ;
418 
419  if ( pPhi < -halfAngTolerance) { pPhi += twopi; } // 0<=pPhi<2pi
420  if ( fSPhi >= 0 )
421  {
422  if ( (std::fabs(pPhi) < halfAngTolerance)
423  && (std::fabs(fSPhi + fDPhi - twopi) < halfAngTolerance) )
424  {
425  pPhi += twopi ; // 0 <= pPhi < 2pi
426  }
427  if ( (pPhi <= fSPhi - halfAngTolerance)
428  || (pPhi >= fSPhi + fDPhi + halfAngTolerance) )
429  {
430  in = kOutside ;
431  }
432  else if ( (pPhi <= fSPhi + halfAngTolerance)
433  || (pPhi >= fSPhi + fDPhi - halfAngTolerance) )
434  {
435  in=kSurface;
436  }
437  }
438  else // fSPhi < 0
439  {
440  if ( (pPhi <= fSPhi + twopi - halfAngTolerance)
441  && (pPhi >= fSPhi + fDPhi + halfAngTolerance) )
442  {
443  in = kOutside;
444  }
445  else
446  {
447  in = kSurface ;
448  }
449  }
450  }
451 
452  // Check on the Surface for Z
453  //
454  if ((zinLow>=-halfCarTolerance)
455  || (zinHigh>=-halfCarTolerance))
456  {
457  in=kSurface;
458  }
459 
460  // Check on the Surface for R
461  //
462  if (fRMin) { tolRMin = fRMin + halfRadTolerance ; }
463  else { tolRMin = 0 ; }
464  tolRMax = fRMax - halfRadTolerance ;
465  if ( ((r2 <= tolRMin*tolRMin) || (r2 >= tolRMax*tolRMax))&&
466  (r2 >=halfRadTolerance*halfRadTolerance) )
467  {
468  return kSurface;
469  }
470 
471  return in;
472 }
473 
475 //
476 // Return unit normal of surface closest to p
477 // - note if point on z axis, ignore phi divided sides
478 // - unsafe if point close to z axis a rmin=0 - no explicit checks
479 
481 {
482  G4int noSurfaces = 0;
483  G4double rho, pPhi;
484  G4double distZLow,distZHigh, distRMin, distRMax;
485  G4double distSPhi = kInfinity, distEPhi = kInfinity;
487 
488  G4ThreeVector norm, sumnorm(0.,0.,0.);
489  G4ThreeVector nZ = G4ThreeVector(0, 0, 1.0);
490  G4ThreeVector nR, nPs, nPe;
491 
492  rho = std::sqrt(p.x()*p.x() + p.y()*p.y());
493 
494  distRMin = std::fabs(rho - fRMin);
495  distRMax = std::fabs(rho - fRMax);
496 
497  // dist to Low Cut
498  //
499  distZLow =std::fabs((p+vZ).dot(fLowNorm));
500 
501  // dist to High Cut
502  //
503  distZHigh = std::fabs((p-vZ).dot(fHighNorm));
504 
505  if (!fPhiFullCutTube) // Protected against (0,0,z)
506  {
507  if ( rho > halfCarTolerance )
508  {
509  pPhi = std::atan2(p.y(),p.x());
510 
511  if(pPhi < fSPhi- halfCarTolerance) { pPhi += twopi; }
512  else if(pPhi > fSPhi+fDPhi+ halfCarTolerance) { pPhi -= twopi; }
513 
514  distSPhi = std::fabs(pPhi - fSPhi);
515  distEPhi = std::fabs(pPhi - fSPhi - fDPhi);
516  }
517  else if( !fRMin )
518  {
519  distSPhi = 0.;
520  distEPhi = 0.;
521  }
522  nPs = G4ThreeVector(std::sin(fSPhi),-std::cos(fSPhi),0);
523  nPe = G4ThreeVector(-std::sin(fSPhi+fDPhi),std::cos(fSPhi+fDPhi),0);
524  }
525  if ( rho > halfCarTolerance ) { nR = G4ThreeVector(p.x()/rho,p.y()/rho,0); }
526 
527  if( distRMax <= halfCarTolerance )
528  {
529  noSurfaces ++;
530  sumnorm += nR;
531  }
532  if( fRMin && (distRMin <= halfCarTolerance) )
533  {
534  noSurfaces ++;
535  sumnorm -= nR;
536  }
537  if( fDPhi < twopi )
538  {
539  if (distSPhi <= halfAngTolerance)
540  {
541  noSurfaces ++;
542  sumnorm += nPs;
543  }
544  if (distEPhi <= halfAngTolerance)
545  {
546  noSurfaces ++;
547  sumnorm += nPe;
548  }
549  }
550  if (distZLow <= halfCarTolerance)
551  {
552  noSurfaces ++;
553  sumnorm += fLowNorm;
554  }
555  if (distZHigh <= halfCarTolerance)
556  {
557  noSurfaces ++;
558  sumnorm += fHighNorm;
559  }
560  if ( noSurfaces == 0 )
561  {
562 #ifdef G4CSGDEBUG
563  G4Exception("G4CutTubs::SurfaceNormal(p)", "GeomSolids1002",
564  JustWarning, "Point p is not on surface !?" );
565  G4int oldprc = G4cout.precision(20);
566  G4cout<< "G4CutTubs::SN ( "<<p.x()<<", "<<p.y()<<", "<<p.z()<<" ); "
567  << G4endl << G4endl;
568  G4cout.precision(oldprc) ;
569 #endif
570  norm = ApproxSurfaceNormal(p);
571  }
572  else if ( noSurfaces == 1 ) { norm = sumnorm; }
573  else { norm = sumnorm.unit(); }
574 
575  return norm;
576 }
577 
579 //
580 // Algorithm for SurfaceNormal() following the original specification
581 // for points not on the surface
582 
584 {
585  ENorm side ;
586  G4ThreeVector norm ;
587  G4double rho, phi ;
588  G4double distZLow,distZHigh,distZ;
589  G4double distRMin, distRMax, distSPhi, distEPhi, distMin ;
591 
592  rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ;
593 
594  distRMin = std::fabs(rho - fRMin) ;
595  distRMax = std::fabs(rho - fRMax) ;
596 
597  //dist to Low Cut
598  //
599  distZLow =std::fabs((p+vZ).dot(fLowNorm));
600 
601  //dist to High Cut
602  //
603  distZHigh = std::fabs((p-vZ).dot(fHighNorm));
604  distZ=std::min(distZLow,distZHigh);
605 
606  if (distRMin < distRMax) // First minimum
607  {
608  if ( distZ < distRMin )
609  {
610  distMin = distZ ;
611  side = kNZ ;
612  }
613  else
614  {
615  distMin = distRMin ;
616  side = kNRMin ;
617  }
618  }
619  else
620  {
621  if ( distZ < distRMax )
622  {
623  distMin = distZ ;
624  side = kNZ ;
625  }
626  else
627  {
628  distMin = distRMax ;
629  side = kNRMax ;
630  }
631  }
632  if (!fPhiFullCutTube && rho ) // Protected against (0,0,z)
633  {
634  phi = std::atan2(p.y(),p.x()) ;
635 
636  if ( phi < 0 ) { phi += twopi; }
637 
638  if ( fSPhi < 0 )
639  {
640  distSPhi = std::fabs(phi - (fSPhi + twopi))*rho ;
641  }
642  else
643  {
644  distSPhi = std::fabs(phi - fSPhi)*rho ;
645  }
646  distEPhi = std::fabs(phi - fSPhi - fDPhi)*rho ;
647 
648  if (distSPhi < distEPhi) // Find new minimum
649  {
650  if ( distSPhi < distMin )
651  {
652  side = kNSPhi ;
653  }
654  }
655  else
656  {
657  if ( distEPhi < distMin )
658  {
659  side = kNEPhi ;
660  }
661  }
662  }
663  switch ( side )
664  {
665  case kNRMin : // Inner radius
666  {
667  norm = G4ThreeVector(-p.x()/rho, -p.y()/rho, 0) ;
668  break ;
669  }
670  case kNRMax : // Outer radius
671  {
672  norm = G4ThreeVector(p.x()/rho, p.y()/rho, 0) ;
673  break ;
674  }
675  case kNZ : // + or - dz
676  {
677  if ( distZHigh > distZLow ) { norm = fHighNorm ; }
678  else { norm = fLowNorm; }
679  break ;
680  }
681  case kNSPhi:
682  {
683  norm = G4ThreeVector(std::sin(fSPhi), -std::cos(fSPhi), 0) ;
684  break ;
685  }
686  case kNEPhi:
687  {
688  norm = G4ThreeVector(-std::sin(fSPhi+fDPhi), std::cos(fSPhi+fDPhi), 0) ;
689  break;
690  }
691  default: // Should never reach this case ...
692  {
693  DumpInfo();
694  G4Exception("G4CutTubs::ApproxSurfaceNormal()",
695  "GeomSolids1002", JustWarning,
696  "Undefined side for valid surface normal to solid.");
697  break ;
698  }
699  }
700  return norm;
701 }
702 
704 //
705 //
706 // Calculate distance to shape from outside, along normalised vector
707 // - return kInfinity if no intersection, or intersection distance <= tolerance
708 //
709 // - Compute the intersection with the z planes
710 // - if at valid r, phi, return
711 //
712 // -> If point is outer outer radius, compute intersection with rmax
713 // - if at valid phi,z return
714 //
715 // -> Compute intersection with inner radius, taking largest +ve root
716 // - if valid (in z,phi), save intersction
717 //
718 // -> If phi segmented, compute intersections with phi half planes
719 // - return smallest of valid phi intersections and
720 // inner radius intersection
721 //
722 // NOTE:
723 // - 'if valid' implies tolerant checking of intersection points
724 
726  const G4ThreeVector& v ) const
727 {
728  G4double snxt = kInfinity ; // snxt = default return value
729  G4double tolORMin2, tolIRMax2 ; // 'generous' radii squared
730  G4double tolORMax2, tolIRMin2;
731  const G4double dRmax = 100.*fRMax;
733 
734  // Intersection point variables
735  //
736  G4double Dist, sd=0, xi, yi, zi, rho2, inum, iden, cosPsi, Comp,calf ;
737  G4double t1, t2, t3, b, c, d ; // Quadratic solver variables
738  G4double distZLow,distZHigh;
739  // Calculate tolerant rmin and rmax
740 
741  if (fRMin > kRadTolerance)
742  {
743  tolORMin2 = (fRMin - halfRadTolerance)*(fRMin - halfRadTolerance) ;
744  tolIRMin2 = (fRMin + halfRadTolerance)*(fRMin + halfRadTolerance) ;
745  }
746  else
747  {
748  tolORMin2 = 0.0 ;
749  tolIRMin2 = 0.0 ;
750  }
751  tolORMax2 = (fRMax + halfRadTolerance)*(fRMax + halfRadTolerance) ;
752  tolIRMax2 = (fRMax - halfRadTolerance)*(fRMax - halfRadTolerance) ;
753 
754  // Intersection with ZCut surfaces
755 
756  // dist to Low Cut
757  //
758  distZLow =(p+vZ).dot(fLowNorm);
759 
760  // dist to High Cut
761  //
762  distZHigh = (p-vZ).dot(fHighNorm);
763 
764  if ( distZLow >= -halfCarTolerance )
765  {
766  calf = v.dot(fLowNorm);
767  if (calf<0)
768  {
769  sd = -distZLow/calf;
770  if(sd < 0.0) { sd = 0.0; }
771 
772  xi = p.x() + sd*v.x() ; // Intersection coords
773  yi = p.y() + sd*v.y() ;
774  rho2 = xi*xi + yi*yi ;
775 
776  // Check validity of intersection
777 
778  if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2))
779  {
780  if (!fPhiFullCutTube && rho2)
781  {
782  // Psi = angle made with central (average) phi of shape
783  //
784  inum = xi*cosCPhi + yi*sinCPhi ;
785  iden = std::sqrt(rho2) ;
786  cosPsi = inum/iden ;
787  if (cosPsi >= cosHDPhiIT) { return sd ; }
788  }
789  else
790  {
791  return sd ;
792  }
793  }
794  }
795  else
796  {
797  if ( sd<halfCarTolerance )
798  {
799  if(calf>=0) { sd=kInfinity; }
800  return sd ; // On/outside extent, and heading away
801  } // -> cannot intersect
802  }
803  }
804 
805  if(distZHigh >= -halfCarTolerance )
806  {
807  calf = v.dot(fHighNorm);
808  if (calf<0)
809  {
810  sd = -distZHigh/calf;
811 
812  if(sd < 0.0) { sd = 0.0; }
813 
814  xi = p.x() + sd*v.x() ; // Intersection coords
815  yi = p.y() + sd*v.y() ;
816  rho2 = xi*xi + yi*yi ;
817 
818  // Check validity of intersection
819 
820  if ((tolIRMin2 <= rho2) && (rho2 <= tolIRMax2))
821  {
822  if (!fPhiFullCutTube && rho2)
823  {
824  // Psi = angle made with central (average) phi of shape
825  //
826  inum = xi*cosCPhi + yi*sinCPhi ;
827  iden = std::sqrt(rho2) ;
828  cosPsi = inum/iden ;
829  if (cosPsi >= cosHDPhiIT) { return sd ; }
830  }
831  else
832  {
833  return sd ;
834  }
835  }
836  }
837  else
838  {
839  if ( sd<halfCarTolerance )
840  {
841  if(calf>=0) { sd=kInfinity; }
842  return sd ; // On/outside extent, and heading away
843  } // -> cannot intersect
844  }
845  }
846 
847  // -> Can not intersect z surfaces
848  //
849  // Intersection with rmax (possible return) and rmin (must also check phi)
850  //
851  // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc.
852  //
853  // Intersects with x^2+y^2=R^2
854  //
855  // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0
856  // t1 t2 t3
857 
858  t1 = 1.0 - v.z()*v.z() ;
859  t2 = p.x()*v.x() + p.y()*v.y() ;
860  t3 = p.x()*p.x() + p.y()*p.y() ;
861  if ( t1 > 0 ) // Check not || to z axis
862  {
863  b = t2/t1 ;
864  c = t3 - fRMax*fRMax ;
865 
866  if ((t3 >= tolORMax2) && (t2<0)) // This also handles the tangent case
867  {
868  // Try outer cylinder intersection, c=(t3-fRMax*fRMax)/t1;
869 
870  c /= t1 ;
871  d = b*b - c ;
872 
873  if (d >= 0) // If real root
874  {
875  sd = c/(-b+std::sqrt(d));
876  if (sd >= 0) // If 'forwards'
877  {
878  if ( sd>dRmax ) // Avoid rounding errors due to precision issues on
879  { // 64 bits systems. Split long distances and recompute
880  G4double fTerm = sd-std::fmod(sd,dRmax);
881  sd = fTerm + DistanceToIn(p+fTerm*v,v);
882  }
883  // Check z intersection
884  //
885  zi = p.z() + sd*v.z() ;
886  xi = p.x() + sd*v.x() ;
887  yi = p.y() + sd*v.y() ;
888  if ((-xi*fLowNorm.x()-yi*fLowNorm.y()
889  -(zi+fDz)*fLowNorm.z())>-halfCarTolerance)
890  {
891  if ((-xi*fHighNorm.x()-yi*fHighNorm.y()
892  +(fDz-zi)*fHighNorm.z())>-halfCarTolerance)
893  {
894  // Z ok. Check phi intersection if reqd
895  //
896  if (fPhiFullCutTube)
897  {
898  return sd ;
899  }
900  else
901  {
902  xi = p.x() + sd*v.x() ;
903  yi = p.y() + sd*v.y() ;
904  cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMax ;
905  if (cosPsi >= cosHDPhiIT) { return sd ; }
906  }
907  } // end if std::fabs(zi)
908  }
909  } // end if (sd>=0)
910  } // end if (d>=0)
911  } // end if (r>=fRMax)
912  else
913  {
914  // Inside outer radius :
915  // check not inside, and heading through tubs (-> 0 to in)
916  if ((t3 > tolIRMin2) && (t2 < 0)
917  && (std::fabs(p.z()) <= std::fabs(GetCutZ(p))-halfCarTolerance ))
918  {
919  // Inside both radii, delta r -ve, inside z extent
920 
921  if (!fPhiFullCutTube)
922  {
923  inum = p.x()*cosCPhi + p.y()*sinCPhi ;
924  iden = std::sqrt(t3) ;
925  cosPsi = inum/iden ;
926  if (cosPsi >= cosHDPhiIT)
927  {
928  // In the old version, the small negative tangent for the point
929  // on surface was not taken in account, and returning 0.0 ...
930  // New version: check the tangent for the point on surface and
931  // if no intersection, return kInfinity, if intersection instead
932  // return sd.
933  //
934  c = t3-fRMax*fRMax;
935  if ( c<=0.0 )
936  {
937  return 0.0;
938  }
939  else
940  {
941  c = c/t1 ;
942  d = b*b-c;
943  if ( d>=0.0 )
944  {
945  snxt = c/(-b+std::sqrt(d)); // using safe solution
946  // for quadratic equation
947  if ( snxt < halfCarTolerance ) { snxt=0; }
948  return snxt ;
949  }
950  else
951  {
952  return kInfinity;
953  }
954  }
955  }
956  }
957  else
958  {
959  // In the old version, the small negative tangent for the point
960  // on surface was not taken in account, and returning 0.0 ...
961  // New version: check the tangent for the point on surface and
962  // if no intersection, return kInfinity, if intersection instead
963  // return sd.
964  //
965  c = t3 - fRMax*fRMax;
966  if ( c<=0.0 )
967  {
968  return 0.0;
969  }
970  else
971  {
972  c = c/t1 ;
973  d = b*b-c;
974  if ( d>=0.0 )
975  {
976  snxt= c/(-b+std::sqrt(d)); // using safe solution
977  // for quadratic equation
978  if ( snxt < halfCarTolerance ) { snxt=0; }
979  return snxt ;
980  }
981  else
982  {
983  return kInfinity;
984  }
985  }
986  } // end if (!fPhiFullCutTube)
987  } // end if (t3>tolIRMin2)
988  } // end if (Inside Outer Radius)
989 
990  if ( fRMin ) // Try inner cylinder intersection
991  {
992  c = (t3 - fRMin*fRMin)/t1 ;
993  d = b*b - c ;
994  if ( d >= 0.0 ) // If real root
995  {
996  // Always want 2nd root - we are outside and know rmax Hit was bad
997  // - If on surface of rmin also need farthest root
998 
999  sd =( b > 0. )? c/(-b - std::sqrt(d)) : (-b + std::sqrt(d));
1000  if (sd >= -10*halfCarTolerance) // check forwards
1001  {
1002  // Check z intersection
1003  //
1004  if (sd < 0.0) { sd = 0.0; }
1005  if (sd>dRmax) // Avoid rounding errors due to precision issues seen
1006  { // 64 bits systems. Split long distances and recompute
1007  G4double fTerm = sd-std::fmod(sd,dRmax);
1008  sd = fTerm + DistanceToIn(p+fTerm*v,v);
1009  }
1010  zi = p.z() + sd*v.z() ;
1011  xi = p.x() + sd*v.x() ;
1012  yi = p.y() + sd*v.y() ;
1013  if ((-xi*fLowNorm.x()-yi*fLowNorm.y()
1014  -(zi+fDz)*fLowNorm.z())>-halfCarTolerance)
1015  {
1016  if ((-xi*fHighNorm.x()-yi*fHighNorm.y()
1017  +(fDz-zi)*fHighNorm.z())>-halfCarTolerance)
1018  {
1019  // Z ok. Check phi
1020  //
1021  if ( fPhiFullCutTube )
1022  {
1023  return sd ;
1024  }
1025  else
1026  {
1027  cosPsi = (xi*cosCPhi + yi*sinCPhi)/fRMin ;
1028  if (cosPsi >= cosHDPhiIT)
1029  {
1030  // Good inner radius isect
1031  // - but earlier phi isect still possible
1032  //
1033  snxt = sd ;
1034  }
1035  }
1036  } // end if std::fabs(zi)
1037  }
1038  } // end if (sd>=0)
1039  } // end if (d>=0)
1040  } // end if (fRMin)
1041  }
1042 
1043  // Phi segment intersection
1044  //
1045  // o Tolerant of points inside phi planes by up to kCarTolerance*0.5
1046  //
1047  // o NOTE: Large duplication of code between sphi & ephi checks
1048  // -> only diffs: sphi -> ephi, Comp -> -Comp and half-plane
1049  // intersection check <=0 -> >=0
1050  // -> use some form of loop Construct ?
1051  //
1052  if ( !fPhiFullCutTube )
1053  {
1054  // First phi surface (Starting phi)
1055  //
1056  Comp = v.x()*sinSPhi - v.y()*cosSPhi ;
1057 
1058  if ( Comp < 0 ) // Component in outwards normal dirn
1059  {
1060  Dist = (p.y()*cosSPhi - p.x()*sinSPhi) ;
1061 
1062  if ( Dist < halfCarTolerance )
1063  {
1064  sd = Dist/Comp ;
1065 
1066  if (sd < snxt)
1067  {
1068  if ( sd < 0 ) { sd = 0.0; }
1069  zi = p.z() + sd*v.z() ;
1070  xi = p.x() + sd*v.x() ;
1071  yi = p.y() + sd*v.y() ;
1072  if ((-xi*fLowNorm.x()-yi*fLowNorm.y()
1073  -(zi+fDz)*fLowNorm.z())>-halfCarTolerance)
1074  {
1075  if ((-xi*fHighNorm.x()-yi*fHighNorm.y()
1076  +(fDz-zi)*fHighNorm.z())>-halfCarTolerance)
1077  {
1078  rho2 = xi*xi + yi*yi ;
1079  if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) )
1080  || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2)
1081  && ( v.y()*cosSPhi - v.x()*sinSPhi > 0 )
1082  && ( v.x()*cosSPhi + v.y()*sinSPhi >= 0 ) )
1083  || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2)
1084  && (v.y()*cosSPhi - v.x()*sinSPhi > 0)
1085  && (v.x()*cosSPhi + v.y()*sinSPhi < 0) ) )
1086  {
1087  // z and r intersections good
1088  // - check intersecting with correct half-plane
1089  //
1090  if ((yi*cosCPhi-xi*sinCPhi) <= halfCarTolerance) { snxt = sd; }
1091  }
1092  } //two Z conditions
1093  }
1094  }
1095  }
1096  }
1097 
1098  // Second phi surface (Ending phi)
1099  //
1100  Comp = -(v.x()*sinEPhi - v.y()*cosEPhi) ;
1101 
1102  if (Comp < 0 ) // Component in outwards normal dirn
1103  {
1104  Dist = -(p.y()*cosEPhi - p.x()*sinEPhi) ;
1105 
1106  if ( Dist < halfCarTolerance )
1107  {
1108  sd = Dist/Comp ;
1109 
1110  if (sd < snxt)
1111  {
1112  if ( sd < 0 ) { sd = 0; }
1113  zi = p.z() + sd*v.z() ;
1114  xi = p.x() + sd*v.x() ;
1115  yi = p.y() + sd*v.y() ;
1116  if ((-xi*fLowNorm.x()-yi*fLowNorm.y()
1117  -(zi+fDz)*fLowNorm.z())>-halfCarTolerance)
1118  {
1119  if ((-xi*fHighNorm.x()-yi*fHighNorm.y()
1120  +(fDz-zi)*fHighNorm.z())>-halfCarTolerance)
1121  {
1122  xi = p.x() + sd*v.x() ;
1123  yi = p.y() + sd*v.y() ;
1124  rho2 = xi*xi + yi*yi ;
1125  if ( ( (rho2 >= tolIRMin2) && (rho2 <= tolIRMax2) )
1126  || ( (rho2 > tolORMin2) && (rho2 < tolIRMin2)
1127  && (v.x()*sinEPhi - v.y()*cosEPhi > 0)
1128  && (v.x()*cosEPhi + v.y()*sinEPhi >= 0) )
1129  || ( (rho2 > tolIRMax2) && (rho2 < tolORMax2)
1130  && (v.x()*sinEPhi - v.y()*cosEPhi > 0)
1131  && (v.x()*cosEPhi + v.y()*sinEPhi < 0) ) )
1132  {
1133  // z and r intersections good
1134  // - check intersecting with correct half-plane
1135  //
1136  if ( (yi*cosCPhi-xi*sinCPhi) >= -halfCarTolerance )
1137  {
1138  snxt = sd;
1139  }
1140  } //?? >=-halfCarTolerance
1141  }
1142  } // two Z conditions
1143  }
1144  }
1145  } // Comp < 0
1146  } // !fPhiFullTube
1147  if ( snxt<halfCarTolerance ) { snxt=0; }
1148 
1149  return snxt ;
1150 }
1151 
1153 //
1154 // Calculate distance to shape from outside, along normalised vector
1155 // - return kInfinity if no intersection, or intersection distance <= tolerance
1156 //
1157 // - Compute the intersection with the z planes
1158 // - if at valid r, phi, return
1159 //
1160 // -> If point is outer outer radius, compute intersection with rmax
1161 // - if at valid phi,z return
1162 //
1163 // -> Compute intersection with inner radius, taking largest +ve root
1164 // - if valid (in z,phi), save intersction
1165 //
1166 // -> If phi segmented, compute intersections with phi half planes
1167 // - return smallest of valid phi intersections and
1168 // inner radius intersection
1169 //
1170 // NOTE:
1171 // - Precalculations for phi trigonometry are Done `just in time'
1172 // - `if valid' implies tolerant checking of intersection points
1173 // Calculate distance (<= actual) to closest surface of shape from outside
1174 // - Calculate distance to z, radial planes
1175 // - Only to phi planes if outside phi extent
1176 // - Return 0 if point inside
1177 
1179 {
1180  G4double safRMin,safRMax,safZLow,safZHigh,safePhi,safe,rho,cosPsi;
1182 
1183  // Distance to R
1184  //
1185  rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ;
1186 
1187  safRMin = fRMin- rho ;
1188  safRMax = rho - fRMax ;
1189 
1190  // Distances to ZCut(Low/High)
1191 
1192  // Dist to Low Cut
1193  //
1194  safZLow = (p+vZ).dot(fLowNorm);
1195 
1196  // Dist to High Cut
1197  //
1198  safZHigh = (p-vZ).dot(fHighNorm);
1199 
1200  safe = std::max(safZLow,safZHigh);
1201 
1202  if ( safRMin > safe ) { safe = safRMin; }
1203  if ( safRMax> safe ) { safe = safRMax; }
1204 
1205  // Distance to Phi
1206  //
1207  if ( (!fPhiFullCutTube) && (rho) )
1208  {
1209  // Psi=angle from central phi to point
1210  //
1211  cosPsi = (p.x()*cosCPhi + p.y()*sinCPhi)/rho ;
1212 
1213  if ( cosPsi < std::cos(fDPhi*0.5) )
1214  {
1215  // Point lies outside phi range
1216 
1217  if ( (p.y()*cosCPhi - p.x()*sinCPhi) <= 0 )
1218  {
1219  safePhi = std::fabs(p.x()*sinSPhi - p.y()*cosSPhi) ;
1220  }
1221  else
1222  {
1223  safePhi = std::fabs(p.x()*sinEPhi - p.y()*cosEPhi) ;
1224  }
1225  if ( safePhi > safe ) { safe = safePhi; }
1226  }
1227  }
1228  if ( safe < 0 ) { safe = 0; }
1229 
1230  return safe ;
1231 }
1232 
1234 //
1235 // Calculate distance to surface of shape from `inside', allowing for tolerance
1236 // - Only Calc rmax intersection if no valid rmin intersection
1237 
1239  const G4ThreeVector& v,
1240  const G4bool calcNorm,
1241  G4bool *validNorm,
1242  G4ThreeVector *n ) const
1243 {
1244  ESide side=kNull , sider=kNull, sidephi=kNull ;
1245  G4double snxt=kInfinity, srd=kInfinity,sz=kInfinity, sphi=kInfinity ;
1246  G4double deltaR, t1, t2, t3, b, c, d2, roMin2 ;
1247  G4double distZLow,distZHigh,calfH,calfL;
1249 
1250  // Vars for phi intersection:
1251  //
1252  G4double pDistS, compS, pDistE, compE, sphi2, xi, yi, vphi, roi2 ;
1253 
1254  // Z plane intersection
1255  // Distances to ZCut(Low/High)
1256 
1257  // dist to Low Cut
1258  //
1259  distZLow =(p+vZ).dot(fLowNorm);
1260 
1261  // dist to High Cut
1262  //
1263  distZHigh = (p-vZ).dot(fHighNorm);
1264 
1265  calfH = v.dot(fHighNorm);
1266  calfL = v.dot(fLowNorm);
1267 
1268  if (calfH > 0 )
1269  {
1270  if ( distZHigh < halfCarTolerance )
1271  {
1272  snxt = -distZHigh/calfH ;
1273  side = kPZ ;
1274  }
1275  else
1276  {
1277  if (calcNorm)
1278  {
1279  *n = G4ThreeVector(0,0,1) ;
1280  *validNorm = true ;
1281  }
1282  return snxt = 0 ;
1283  }
1284  }
1285  if ( calfL>0)
1286  {
1287 
1288  if ( distZLow < halfCarTolerance )
1289  {
1290  sz = -distZLow/calfL ;
1291  if(sz<snxt){
1292  snxt=sz;
1293  side = kMZ ;
1294  }
1295 
1296  }
1297  else
1298  {
1299  if (calcNorm)
1300  {
1301  *n = G4ThreeVector(0,0,-1) ;
1302  *validNorm = true ;
1303  }
1304  return snxt = 0.0 ;
1305  }
1306  }
1307  if((calfH<=0)&&(calfL<=0))
1308  {
1309  snxt = kInfinity ; // Travel perpendicular to z axis
1310  side = kNull;
1311  }
1312  // Radial Intersections
1313  //
1314  // Find intersection with cylinders at rmax/rmin
1315  // Intersection point (xi,yi,zi) on line x=p.x+t*v.x etc.
1316  //
1317  // Intersects with x^2+y^2=R^2
1318  //
1319  // Hence (v.x^2+v.y^2)t^2+ 2t(p.x*v.x+p.y*v.y)+p.x^2+p.y^2-R^2=0
1320  //
1321  // t1 t2 t3
1322 
1323  t1 = 1.0 - v.z()*v.z() ; // since v normalised
1324  t2 = p.x()*v.x() + p.y()*v.y() ;
1325  t3 = p.x()*p.x() + p.y()*p.y() ;
1326 
1327  if ( snxt > 10*(fDz+fRMax) ) { roi2 = 2*fRMax*fRMax; }
1328  else { roi2 = snxt*snxt*t1 + 2*snxt*t2 + t3; } // radius^2 on +-fDz
1329 
1330  if ( t1 > 0 ) // Check not parallel
1331  {
1332  // Calculate srd, r exit distance
1333 
1334  if ( (t2 >= 0.0) && (roi2 > fRMax*(fRMax + kRadTolerance)) )
1335  {
1336  // Delta r not negative => leaving via rmax
1337 
1338  deltaR = t3 - fRMax*fRMax ;
1339 
1340  // NOTE: Should use rho-fRMax<-kRadTolerance*0.5
1341  // - avoid sqrt for efficiency
1342 
1343  if ( deltaR < -kRadTolerance*fRMax )
1344  {
1345  b = t2/t1 ;
1346  c = deltaR/t1 ;
1347  d2 = b*b-c;
1348  if( d2 >= 0 ) { srd = c/( -b - std::sqrt(d2)); }
1349  else { srd = 0.; }
1350  sider = kRMax ;
1351  }
1352  else
1353  {
1354  // On tolerant boundary & heading outwards (or perpendicular to)
1355  // outer radial surface -> leaving immediately
1356 
1357  if ( calcNorm )
1358  {
1359  *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ;
1360  *validNorm = true ;
1361  }
1362  return snxt = 0 ; // Leaving by rmax immediately
1363  }
1364  }
1365  else if ( t2 < 0. ) // i.e. t2 < 0; Possible rmin intersection
1366  {
1367  roMin2 = t3 - t2*t2/t1 ; // min ro2 of the plane of movement
1368 
1369  if ( fRMin && (roMin2 < fRMin*(fRMin - kRadTolerance)) )
1370  {
1371  deltaR = t3 - fRMin*fRMin ;
1372  b = t2/t1 ;
1373  c = deltaR/t1 ;
1374  d2 = b*b - c ;
1375 
1376  if ( d2 >= 0 ) // Leaving via rmin
1377  {
1378  // NOTE: SHould use rho-rmin>kRadTolerance*0.5
1379  // - avoid sqrt for efficiency
1380 
1381  if (deltaR > kRadTolerance*fRMin)
1382  {
1383  srd = c/(-b+std::sqrt(d2));
1384  sider = kRMin ;
1385  }
1386  else
1387  {
1388  if ( calcNorm ) { *validNorm = false; } // Concave side
1389  return snxt = 0.0;
1390  }
1391  }
1392  else // No rmin intersect -> must be rmax intersect
1393  {
1394  deltaR = t3 - fRMax*fRMax ;
1395  c = deltaR/t1 ;
1396  d2 = b*b-c;
1397  if( d2 >=0. )
1398  {
1399  srd = -b + std::sqrt(d2) ;
1400  sider = kRMax ;
1401  }
1402  else // Case: On the border+t2<kRadTolerance
1403  // (v is perpendicular to the surface)
1404  {
1405  if (calcNorm)
1406  {
1407  *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ;
1408  *validNorm = true ;
1409  }
1410  return snxt = 0.0;
1411  }
1412  }
1413  }
1414  else if ( roi2 > fRMax*(fRMax + kRadTolerance) )
1415  // No rmin intersect -> must be rmax intersect
1416  {
1417  deltaR = t3 - fRMax*fRMax ;
1418  b = t2/t1 ;
1419  c = deltaR/t1;
1420  d2 = b*b-c;
1421  if( d2 >= 0 )
1422  {
1423  srd = -b + std::sqrt(d2) ;
1424  sider = kRMax ;
1425  }
1426  else // Case: On the border+t2<kRadTolerance
1427  // (v is perpendicular to the surface)
1428  {
1429  if (calcNorm)
1430  {
1431  *n = G4ThreeVector(p.x()/fRMax,p.y()/fRMax,0) ;
1432  *validNorm = true ;
1433  }
1434  return snxt = 0.0;
1435  }
1436  }
1437  }
1438  // Phi Intersection
1439 
1440  if ( !fPhiFullCutTube )
1441  {
1442  // add angle calculation with correction
1443  // of the difference in domain of atan2 and Sphi
1444  //
1445  vphi = std::atan2(v.y(),v.x()) ;
1446 
1447  if ( vphi < fSPhi - halfAngTolerance ) { vphi += twopi; }
1448  else if ( vphi > fSPhi + fDPhi + halfAngTolerance ) { vphi -= twopi; }
1449 
1450 
1451  if ( p.x() || p.y() ) // Check if on z axis (rho not needed later)
1452  {
1453  // pDist -ve when inside
1454 
1455  pDistS = p.x()*sinSPhi - p.y()*cosSPhi ;
1456  pDistE = -p.x()*sinEPhi + p.y()*cosEPhi ;
1457 
1458  // Comp -ve when in direction of outwards normal
1459 
1460  compS = -sinSPhi*v.x() + cosSPhi*v.y() ;
1461  compE = sinEPhi*v.x() - cosEPhi*v.y() ;
1462 
1463  sidephi = kNull;
1464 
1465  if( ( (fDPhi <= pi) && ( (pDistS <= halfCarTolerance)
1466  && (pDistE <= halfCarTolerance) ) )
1467  || ( (fDPhi > pi) && !((pDistS > halfCarTolerance)
1468  && (pDistE > halfCarTolerance) ) ) )
1469  {
1470  // Inside both phi *full* planes
1471 
1472  if ( compS < 0 )
1473  {
1474  sphi = pDistS/compS ;
1475 
1476  if (sphi >= -halfCarTolerance)
1477  {
1478  xi = p.x() + sphi*v.x() ;
1479  yi = p.y() + sphi*v.y() ;
1480 
1481  // Check intersecting with correct half-plane
1482  // (if not -> no intersect)
1483  //
1484  if( (std::fabs(xi)<=kCarTolerance)
1485  && (std::fabs(yi)<=kCarTolerance) )
1486  {
1487  sidephi = kSPhi;
1488  if (((fSPhi-halfAngTolerance)<=vphi)
1489  &&((fSPhi+fDPhi+halfAngTolerance)>=vphi))
1490  {
1491  sphi = kInfinity;
1492  }
1493  }
1494  else if ( yi*cosCPhi-xi*sinCPhi >=0 )
1495  {
1496  sphi = kInfinity ;
1497  }
1498  else
1499  {
1500  sidephi = kSPhi ;
1501  if ( pDistS > -halfCarTolerance )
1502  {
1503  sphi = 0.0 ; // Leave by sphi immediately
1504  }
1505  }
1506  }
1507  else
1508  {
1509  sphi = kInfinity ;
1510  }
1511  }
1512  else
1513  {
1514  sphi = kInfinity ;
1515  }
1516 
1517  if ( compE < 0 )
1518  {
1519  sphi2 = pDistE/compE ;
1520 
1521  // Only check further if < starting phi intersection
1522  //
1523  if ( (sphi2 > -halfCarTolerance) && (sphi2 < sphi) )
1524  {
1525  xi = p.x() + sphi2*v.x() ;
1526  yi = p.y() + sphi2*v.y() ;
1527 
1528  if ((std::fabs(xi)<=kCarTolerance)&&(std::fabs(yi)<=kCarTolerance))
1529  {
1530  // Leaving via ending phi
1531  //
1532  if( !((fSPhi-halfAngTolerance <= vphi)
1533  &&(fSPhi+fDPhi+halfAngTolerance >= vphi)) )
1534  {
1535  sidephi = kEPhi ;
1536  if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; }
1537  else { sphi = 0.0 ; }
1538  }
1539  }
1540  else // Check intersecting with correct half-plane
1541 
1542  if ( (yi*cosCPhi-xi*sinCPhi) >= 0)
1543  {
1544  // Leaving via ending phi
1545  //
1546  sidephi = kEPhi ;
1547  if ( pDistE <= -halfCarTolerance ) { sphi = sphi2 ; }
1548  else { sphi = 0.0 ; }
1549  }
1550  }
1551  }
1552  }
1553  else
1554  {
1555  sphi = kInfinity ;
1556  }
1557  }
1558  else
1559  {
1560  // On z axis + travel not || to z axis -> if phi of vector direction
1561  // within phi of shape, Step limited by rmax, else Step =0
1562 
1563  if ( (fSPhi - halfAngTolerance <= vphi)
1564  && (vphi <= fSPhi + fDPhi + halfAngTolerance ) )
1565  {
1566  sphi = kInfinity ;
1567  }
1568  else
1569  {
1570  sidephi = kSPhi ; // arbitrary
1571  sphi = 0.0 ;
1572  }
1573  }
1574  if (sphi < snxt) // Order intersecttions
1575  {
1576  snxt = sphi ;
1577  side = sidephi ;
1578  }
1579  }
1580  if (srd < snxt) // Order intersections
1581  {
1582  snxt = srd ;
1583  side = sider ;
1584  }
1585  }
1586  if (calcNorm)
1587  {
1588  switch(side)
1589  {
1590  case kRMax:
1591  // Note: returned vector not normalised
1592  // (divide by fRMax for unit vector)
1593  //
1594  xi = p.x() + snxt*v.x() ;
1595  yi = p.y() + snxt*v.y() ;
1596  *n = G4ThreeVector(xi/fRMax,yi/fRMax,0) ;
1597  *validNorm = true ;
1598  break ;
1599 
1600  case kRMin:
1601  *validNorm = false ; // Rmin is inconvex
1602  break ;
1603 
1604  case kSPhi:
1605  if ( fDPhi <= pi )
1606  {
1607  *n = G4ThreeVector(sinSPhi,-cosSPhi,0) ;
1608  *validNorm = true ;
1609  }
1610  else
1611  {
1612  *validNorm = false ;
1613  }
1614  break ;
1615 
1616  case kEPhi:
1617  if (fDPhi <= pi)
1618  {
1619  *n = G4ThreeVector(-sinEPhi,cosEPhi,0) ;
1620  *validNorm = true ;
1621  }
1622  else
1623  {
1624  *validNorm = false ;
1625  }
1626  break ;
1627 
1628  case kPZ:
1629  *n = fHighNorm ;
1630  *validNorm = true ;
1631  break ;
1632 
1633  case kMZ:
1634  *n = fLowNorm ;
1635  *validNorm = true ;
1636  break ;
1637 
1638  default:
1639  G4cout << G4endl ;
1640  DumpInfo();
1641  std::ostringstream message;
1642  G4int oldprc = message.precision(16);
1643  message << "Undefined side for valid surface normal to solid."
1644  << G4endl
1645  << "Position:" << G4endl << G4endl
1646  << "p.x() = " << p.x()/mm << " mm" << G4endl
1647  << "p.y() = " << p.y()/mm << " mm" << G4endl
1648  << "p.z() = " << p.z()/mm << " mm" << G4endl << G4endl
1649  << "Direction:" << G4endl << G4endl
1650  << "v.x() = " << v.x() << G4endl
1651  << "v.y() = " << v.y() << G4endl
1652  << "v.z() = " << v.z() << G4endl << G4endl
1653  << "Proposed distance :" << G4endl << G4endl
1654  << "snxt = " << snxt/mm << " mm" << G4endl ;
1655  message.precision(oldprc) ;
1656  G4Exception("G4CutTubs::DistanceToOut(p,v,..)", "GeomSolids1002",
1657  JustWarning, message);
1658  break ;
1659  }
1660  }
1661  if ( snxt<halfCarTolerance ) { snxt=0 ; }
1662  return snxt ;
1663 }
1664 
1666 //
1667 // Calculate distance (<=actual) to closest surface of shape from inside
1668 
1670 {
1671  G4double safRMin,safRMax,safZLow,safZHigh,safePhi,safe,rho;
1673 
1674  rho = std::sqrt(p.x()*p.x() + p.y()*p.y()) ; // Distance to R
1675 
1676  safRMin = rho - fRMin ;
1677  safRMax = fRMax - rho ;
1678 
1679  // Distances to ZCut(Low/High)
1680 
1681  // Dist to Low Cut
1682  //
1683  safZLow = std::fabs((p+vZ).dot(fLowNorm));
1684 
1685  // Dist to High Cut
1686  //
1687  safZHigh = std::fabs((p-vZ).dot(fHighNorm));
1688  safe = std::min(safZLow,safZHigh);
1689 
1690  if ( safRMin < safe ) { safe = safRMin; }
1691  if ( safRMax< safe ) { safe = safRMax; }
1692 
1693  // Check if phi divided, Calc distances closest phi plane
1694  //
1695  if ( !fPhiFullCutTube )
1696  {
1697  if ( p.y()*cosCPhi-p.x()*sinCPhi <= 0 )
1698  {
1699  safePhi = -(p.x()*sinSPhi - p.y()*cosSPhi) ;
1700  }
1701  else
1702  {
1703  safePhi = (p.x()*sinEPhi - p.y()*cosEPhi) ;
1704  }
1705  if (safePhi < safe) { safe = safePhi ; }
1706  }
1707  if ( safe < 0 ) { safe = 0; }
1708 
1709  return safe ;
1710 }
1711 
1713 //
1714 // Stream object contents to an output stream
1715 
1717 {
1718  return G4String("G4CutTubs");
1719 }
1720 
1722 //
1723 // Make a clone of the object
1724 //
1726 {
1727  return new G4CutTubs(*this);
1728 }
1729 
1731 //
1732 // Stream object contents to an output stream
1733 
1734 std::ostream& G4CutTubs::StreamInfo( std::ostream& os ) const
1735 {
1736  G4int oldprc = os.precision(16);
1737  os << "-----------------------------------------------------------\n"
1738  << " *** Dump for solid - " << GetName() << " ***\n"
1739  << " ===================================================\n"
1740  << " Solid type: G4CutTubs\n"
1741  << " Parameters: \n"
1742  << " inner radius : " << fRMin/mm << " mm \n"
1743  << " outer radius : " << fRMax/mm << " mm \n"
1744  << " half length Z: " << fDz/mm << " mm \n"
1745  << " starting phi : " << fSPhi/degree << " degrees \n"
1746  << " delta phi : " << fDPhi/degree << " degrees \n"
1747  << " low Norm : " << fLowNorm << " \n"
1748  << " high Norm : " <<fHighNorm << " \n"
1749  << "-----------------------------------------------------------\n";
1750  os.precision(oldprc);
1751 
1752  return os;
1753 }
1754 
1756 //
1757 // GetPointOnSurface
1758 
1760 {
1761  G4double xRand, yRand, zRand, phi, cosphi, sinphi, chose,
1762  aOne, aTwo, aThr, aFou;
1763  G4double rRand;
1764 
1765  aOne = 2.*fDz*fDPhi*fRMax;
1766  aTwo = 2.*fDz*fDPhi*fRMin;
1767  aThr = 0.5*fDPhi*(fRMax*fRMax-fRMin*fRMin);
1768  aFou = 2.*fDz*(fRMax-fRMin);
1769 
1771  cosphi = std::cos(phi);
1772  sinphi = std::sin(phi);
1773 
1774  rRand = GetRadiusInRing(fRMin,fRMax);
1775 
1776  if( (fSPhi == 0) && (fDPhi == twopi) ) { aFou = 0; }
1777 
1778  chose = G4RandFlat::shoot(0.,aOne+aTwo+2.*aThr+2.*aFou);
1779 
1780  if( (chose >=0) && (chose < aOne) )
1781  {
1782  xRand = fRMax*cosphi;
1783  yRand = fRMax*sinphi;
1784  zRand = G4RandFlat::shoot(GetCutZ(G4ThreeVector(xRand,yRand,-fDz)),
1785  GetCutZ(G4ThreeVector(xRand,yRand,fDz)));
1786  return G4ThreeVector (xRand, yRand, zRand);
1787  }
1788  else if( (chose >= aOne) && (chose < aOne + aTwo) )
1789  {
1790  xRand = fRMin*cosphi;
1791  yRand = fRMin*sinphi;
1792  zRand = G4RandFlat::shoot(GetCutZ(G4ThreeVector(xRand,yRand,-fDz)),
1793  GetCutZ(G4ThreeVector(xRand,yRand,fDz)));
1794  return G4ThreeVector (xRand, yRand, zRand);
1795  }
1796  else if( (chose >= aOne + aTwo) && (chose < aOne + aTwo + aThr) )
1797  {
1798  xRand = rRand*cosphi;
1799  yRand = rRand*sinphi;
1800  zRand = GetCutZ(G4ThreeVector(xRand,yRand,fDz));
1801  return G4ThreeVector (xRand, yRand, zRand);
1802  }
1803  else if( (chose >= aOne + aTwo + aThr) && (chose < aOne + aTwo + 2.*aThr) )
1804  {
1805  xRand = rRand*cosphi;
1806  yRand = rRand*sinphi;
1807  zRand = GetCutZ(G4ThreeVector(xRand,yRand,-fDz));
1808  return G4ThreeVector (xRand, yRand, zRand);
1809  }
1810  else if( (chose >= aOne + aTwo + 2.*aThr)
1811  && (chose < aOne + aTwo + 2.*aThr + aFou) )
1812  {
1813  xRand = rRand*std::cos(fSPhi);
1814  yRand = rRand*std::sin(fSPhi);
1815  zRand = G4RandFlat::shoot(GetCutZ(G4ThreeVector(xRand,yRand,-fDz)),
1816  GetCutZ(G4ThreeVector(xRand,yRand,fDz)));
1817  return G4ThreeVector (xRand, yRand, zRand);
1818  }
1819  else
1820  {
1821  xRand = rRand*std::cos(fSPhi+fDPhi);
1822  yRand = rRand*std::sin(fSPhi+fDPhi);
1823  zRand = G4RandFlat::shoot(GetCutZ(G4ThreeVector(xRand,yRand,-fDz)),
1824  GetCutZ(G4ThreeVector(xRand,yRand,fDz)));
1825  return G4ThreeVector (xRand, yRand, zRand);
1826  }
1827 }
1828 
1830 //
1831 // Methods for visualisation
1832 
1834 {
1835  scene.AddSolid (*this) ;
1836 }
1837 
1839 {
1840  typedef G4double G4double3[3];
1841  typedef G4int G4int4[4];
1842 
1843  G4Polyhedron *ph = new G4Polyhedron;
1845  G4int nn=ph1->GetNoVertices();
1846  G4int nf=ph1->GetNoFacets();
1847  G4double3* xyz = new G4double3[nn]; // number of nodes
1848  G4int4* faces = new G4int4[nf] ; // number of faces
1849 
1850  for(G4int i=0;i<nn;i++)
1851  {
1852  xyz[i][0]=ph1->GetVertex(i+1).x();
1853  xyz[i][1]=ph1->GetVertex(i+1).y();
1854  G4double tmpZ=ph1->GetVertex(i+1).z();
1855  if(tmpZ>=fDz-kCarTolerance)
1856  {
1857  xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],fDz));
1858  }
1859  else if(tmpZ<=-fDz+kCarTolerance)
1860  {
1861  xyz[i][2]=GetCutZ(G4ThreeVector(xyz[i][0],xyz[i][1],-fDz));
1862  }
1863  else
1864  {
1865  xyz[i][2]=tmpZ;
1866  }
1867  }
1868  G4int iNodes[4];
1869  G4int *iEdge=0;
1870  G4int n;
1871  for(G4int i=0;i<nf;i++)
1872  {
1873  ph1->GetFacet(i+1,n,iNodes,iEdge);
1874  for(G4int k=0;k<n;k++)
1875  {
1876  faces[i][k]=iNodes[k];
1877  }
1878  for(G4int k=n;k<4;k++)
1879  {
1880  faces[i][k]=0;
1881  }
1882  }
1883  ph->createPolyhedron(nn,nf,xyz,faces);
1884 
1885  delete [] xyz;
1886  delete [] faces;
1887  delete ph1;
1888 
1889  return ph;
1890 }
1891 
1892 // Auxilary Methods for Solid
1893 
1895 // Return true if Cutted planes are crossing
1896 // Check Intersection Points on OX and OY axes
1897 
1899 {
1900  G4double zXLow1,zXLow2,zYLow1,zYLow2;
1901  G4double zXHigh1,zXHigh2,zYHigh1,zYHigh2;
1902 
1903  zXLow1 = GetCutZ(G4ThreeVector(-fRMax, 0,-fDz));
1904  zXLow2 = GetCutZ(G4ThreeVector( fRMax, 0,-fDz));
1905  zYLow1 = GetCutZ(G4ThreeVector( 0,-fRMax,-fDz));
1906  zYLow2 = GetCutZ(G4ThreeVector( 0, fRMax,-fDz));
1907  zXHigh1 = GetCutZ(G4ThreeVector(-fRMax, 0, fDz));
1908  zXHigh2 = GetCutZ(G4ThreeVector( fRMax, 0, fDz));
1909  zYHigh1 = GetCutZ(G4ThreeVector( 0,-fRMax, fDz));
1910  zYHigh2 = GetCutZ(G4ThreeVector( 0, fRMax, fDz));
1911  if ( (zXLow1>zXHigh1) ||(zXLow2>zXHigh2)
1912  || (zYLow1>zYHigh1) ||(zYLow2>zYHigh2)) { return true; }
1913 
1914  return false;
1915 }
1916 
1918 //
1919 // Return real Z coordinate of point on Cutted +/- fDZ plane
1920 
1922 {
1923  G4double newz = p.z(); // p.z() should be either +fDz or -fDz
1924  if (p.z()<0)
1925  {
1926  if(fLowNorm.z()!=0.)
1927  {
1928  newz = -fDz-(p.x()*fLowNorm.x()+p.y()*fLowNorm.y())/fLowNorm.z();
1929  }
1930  }
1931  else
1932  {
1933  if(fHighNorm.z()!=0.)
1934  {
1935  newz = fDz-(p.x()*fHighNorm.x()+p.y()*fHighNorm.y())/fHighNorm.z();
1936  }
1937  }
1938  return newz;
1939 }
1940 
1942 //
1943 // Calculate Min and Max Z for CutZ
1944 
1946 
1947 {
1948  G4double phiLow = std::atan2(fLowNorm.y(),fLowNorm.x());
1949  G4double phiHigh= std::atan2(fHighNorm.y(),fHighNorm.x());
1950 
1951  G4double xc=0, yc=0,z1;
1952  G4double z[8];
1953  G4bool in_range_low = false;
1954  G4bool in_range_hi = false;
1955 
1956  G4int i;
1957  for (i=0; i<2; i++)
1958  {
1959  if (phiLow<0) { phiLow+=twopi; }
1960  G4double ddp = phiLow-fSPhi;
1961  if (ddp<0) { ddp += twopi; }
1962  if (ddp <= fDPhi)
1963  {
1964  xc = fRMin*std::cos(phiLow);
1965  yc = fRMin*std::sin(phiLow);
1966  z1 = GetCutZ(G4ThreeVector(xc, yc, -fDz));
1967  xc = fRMax*std::cos(phiLow);
1968  yc = fRMax*std::sin(phiLow);
1969  z1 = std::min(z1, GetCutZ(G4ThreeVector(xc, yc, -fDz)));
1970  if (in_range_low) { zmin = std::min(zmin, z1); }
1971  else { zmin = z1; }
1972  in_range_low = true;
1973  }
1974  phiLow += pi;
1975  if (phiLow>twopi) { phiLow-=twopi; }
1976  }
1977  for (i=0; i<2; i++)
1978  {
1979  if (phiHigh<0) { phiHigh+=twopi; }
1980  G4double ddp = phiHigh-fSPhi;
1981  if (ddp<0) { ddp += twopi; }
1982  if (ddp <= fDPhi)
1983  {
1984  xc = fRMin*std::cos(phiHigh);
1985  yc = fRMin*std::sin(phiHigh);
1986  z1 = GetCutZ(G4ThreeVector(xc, yc, fDz));
1987  xc = fRMax*std::cos(phiHigh);
1988  yc = fRMax*std::sin(phiHigh);
1989  z1 = std::min(z1, GetCutZ(G4ThreeVector(xc, yc, fDz)));
1990  if (in_range_hi) { zmax = std::min(zmax, z1); }
1991  else { zmax = z1; }
1992  in_range_hi = true;
1993  }
1994  phiHigh += pi;
1995  if (phiHigh>twopi) { phiHigh-=twopi; }
1996  }
1997 
1998  xc = fRMin*std::cos(fSPhi);
1999  yc = fRMin*std::sin(fSPhi);
2000  z[0] = GetCutZ(G4ThreeVector(xc, yc, -fDz));
2001  z[4] = GetCutZ(G4ThreeVector(xc, yc, fDz));
2002 
2003  xc = fRMin*std::cos(fSPhi+fDPhi);
2004  yc = fRMin*std::sin(fSPhi+fDPhi);
2005  z[1] = GetCutZ(G4ThreeVector(xc, yc, -fDz));
2006  z[5] = GetCutZ(G4ThreeVector(xc, yc, fDz));
2007 
2008  xc = fRMax*std::cos(fSPhi);
2009  yc = fRMax*std::sin(fSPhi);
2010  z[2] = GetCutZ(G4ThreeVector(xc, yc, -fDz));
2011  z[6] = GetCutZ(G4ThreeVector(xc, yc, fDz));
2012 
2013  xc = fRMax*std::cos(fSPhi+fDPhi);
2014  yc = fRMax*std::sin(fSPhi+fDPhi);
2015  z[3] = GetCutZ(G4ThreeVector(xc, yc, -fDz));
2016  z[7] = GetCutZ(G4ThreeVector(xc, yc, fDz));
2017 
2018  // Find min/max
2019 
2020  z1=z[0];
2021  for (i = 1; i < 4; i++)
2022  {
2023  if(z[i] < z[i-1])z1=z[i];
2024  }
2025 
2026  if (in_range_low)
2027  {
2028  zmin = std::min(zmin, z1);
2029  }
2030  else
2031  {
2032  zmin = z1;
2033  }
2034  z1=z[4];
2035  for (i = 1; i < 4; i++)
2036  {
2037  if(z[4+i] > z[4+i-1]) { z1=z[4+i]; }
2038  }
2039 
2040  if (in_range_hi) { zmax = std::max(zmax, z1); }
2041  else { zmax = z1; }
2042 }
G4double GetCosStartPhi() const
G4String GetName() const
ThreeVector shoot(const G4int Ap, const G4int Af)
static constexpr double mm
Definition: G4SIunits.hh:115
G4double fDPhi
Definition: G4OTubs.hh:177
static const G4double kInfinity
Definition: geomdefs.hh:42
CLHEP::Hep3Vector G4ThreeVector
G4double cosSPhi
Definition: G4OTubs.hh:181
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
G4double fRMax
Definition: G4OTubs.hh:177
G4double GetSinStartPhi() const
G4double GetRadiusInRing(G4double rmin, G4double rmax) const
Definition: G4CSGSolid.cc:111
static const G4double d2
G4ThreeVector GetLowNorm() const
void GetMaxMinZ(G4double &zmin, G4double &zmax) const
Definition: G4CutTubs.cc:1945
G4double cosEPhi
Definition: G4OTubs.hh:181
G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v) const
Definition: G4CutTubs.cc:725
G4double kAngTolerance
Definition: G4OTubs.hh:173
virtual void AddSolid(const G4Box &)=0
int G4int
Definition: G4Types.hh:78
G4double sinSPhi
Definition: G4OTubs.hh:181
void DumpInfo() const
G4double cosCPhi
Definition: G4OTubs.hh:181
static constexpr double twopi
Definition: G4SIunits.hh:76
EInside Inside(const G4ThreeVector &p) const
Definition: G4CutTubs.cc:373
G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=G4bool(false), G4bool *validNorm=0, G4ThreeVector *n=0) const
Definition: G4CutTubs.cc:1238
G4CutTubs & operator=(const G4CutTubs &rhs)
Definition: G4CutTubs.cc:180
G4OTubs & operator=(const G4OTubs &rhs)
Definition: G4OTubs.cc:140
G4GLOB_DLL std::ostream G4cout
G4VSolid * Clone() const
Definition: G4CutTubs.cc:1725
static constexpr double degree
Definition: G4SIunits.hh:144
G4double GetRadialTolerance() const
bool G4bool
Definition: G4Types.hh:79
G4ThreeVector SurfaceNormal(const G4ThreeVector &p) const
Definition: G4CutTubs.cc:480
G4double GetSinEndPhi() const
G4double sinEPhi
Definition: G4OTubs.hh:181
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
std::ostream & StreamInfo(std::ostream &os) const
Definition: G4CutTubs.cc:1734
G4bool BoundingBoxVsVoxelLimits(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
const G4int n
G4bool fPhiFullCutTube
Definition: G4CutTubs.hh:147
std::vector< G4ThreeVector > G4ThreeVectorList
G4double GetZHalfLength() const
G4double halfRadTolerance
Definition: G4CutTubs.hh:151
G4Polyhedron * CreatePolyhedron() const
Definition: G4OTubs.cc:1728
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
G4ThreeVector ApproxSurfaceNormal(const G4ThreeVector &p) const
Definition: G4CutTubs.cc:583
G4double GetOuterRadius() const
G4bool IsCrossingCutPlanes() const
Definition: G4CutTubs.cc:1898
G4GeometryType GetEntityType() const
Definition: G4CutTubs.cc:1716
G4ThreeVector fLowNorm
Definition: G4CutTubs.hh:143
T max(const T t1, const T t2)
brief Return the largest of the two arguments
EInside
Definition: geomdefs.hh:58
void DescribeYourselfTo(G4VGraphicsScene &scene) const
Definition: G4CutTubs.cc:1833
EAxis
Definition: geomdefs.hh:54
G4double halfCarTolerance
Definition: G4CutTubs.hh:151
G4double GetCosEndPhi() const
G4ThreeVector GetHighNorm() const
G4double fDz
Definition: G4OTubs.hh:177
G4double cosHDPhiIT
Definition: G4OTubs.hh:181
G4double fSPhi
Definition: G4OTubs.hh:177
T min(const T t1, const T t2)
brief Return the smallest of the two arguments
G4double kRadTolerance
Definition: G4OTubs.hh:173
G4double GetInnerRadius() const
CLHEP::Hep2Vector G4TwoVector
Definition: G4TwoVector.hh:42
#define G4endl
Definition: G4ios.hh:61
G4double kCarTolerance
Definition: G4VSolid.hh:307
G4double fRMin
Definition: G4OTubs.hh:177
static constexpr double pi
Definition: G4SIunits.hh:75
G4double halfAngTolerance
Definition: G4CutTubs.hh:151
void Extent(G4ThreeVector &pMin, G4ThreeVector &pMax) const
Definition: G4CutTubs.cc:205
G4double GetDeltaPhiAngle() const
G4ThreeVector fHighNorm
Definition: G4CutTubs.hh:143
double G4double
Definition: G4Types.hh:76
G4Polyhedron * CreatePolyhedron() const
Definition: G4CutTubs.cc:1838
static constexpr double deg
Definition: G4SIunits.hh:152
G4ThreeVector GetPointOnSurface() const
Definition: G4CutTubs.cc:1759
G4double GetAngularTolerance() const
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pmin, G4double &pmax) const
Definition: G4CutTubs.cc:262
static G4bool DiskExtent(G4double rmin, G4double rmax, G4double startPhi, G4double delPhi, G4TwoVector &pmin, G4TwoVector &pmax)
Definition: G4GeomTools.cc:378
static G4GeometryTolerance * GetInstance()
G4CutTubs(const G4String &pName, G4double pRMin, G4double pRMax, G4double pDz, G4double pSPhi, G4double pDPhi, G4ThreeVector pLowNorm, G4ThreeVector pHighNorm)
Definition: G4CutTubs.cc:65
G4double sinCPhi
Definition: G4OTubs.hh:181
G4double GetCutZ(const G4ThreeVector &p) const
Definition: G4CutTubs.cc:1921