Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4FissionLibrary.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // This software was developed by Lawrence Livermore National Laboratory.
28 //
29 // Redistribution and use in source and binary forms, with or without
30 // modification, are permitted provided that the following conditions are met:
31 //
32 // 1. Redistributions of source code must retain the above copyright notice,
33 // this list of conditions and the following disclaimer.
34 // 2. Redistributions in binary form must reproduce the above copyright notice,
35 // this list of conditions and the following disclaimer in the documentation
36 // and/or other materials provided with the distribution.
37 // 3. The name of the author may not be used to endorse or promote products
38 // derived from this software without specific prior written permission.
39 //
40 // THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
41 // WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
42 // MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO
43 // EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
44 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
45 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
46 // OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
47 // WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
48 // OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
49 // ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
50 //
51 // Copyright (c) 2006 The Regents of the University of California.
52 // All rights reserved.
53 // UCRL-CODE-224807
54 //
55 //
56 // $Id: G4FissionLibrary.cc 67966 2013-03-13 09:38:38Z gcosmo $
57 //
58 // neutron_hp -- source file
59 // J.M. Verbeke, Jan-2007
60 // A low energy neutron-induced fission model.
61 //
62 
63 #include "G4FissionLibrary.hh"
64 #include "G4ParticleHPManager.hh"
65 #include "G4SystemOfUnits.hh"
66 
68  : G4ParticleHPFinalState(), theIsotope(0), targetMass(0.0)
69 {
70  hasXsec = false;
71  fe=0;
72 }
73 
75 {}
76 
78 {
79  G4FissionLibrary * theNew = new G4FissionLibrary;
80  return theNew;
81 }
82 
83 //void G4FissionLibrary::Init (G4double A, G4double Z, G4String & dirName, G4String &)
85 {
86  G4String tString = "/FS/";
87  G4bool dbool;
88  theIsotope = static_cast<G4int>(1000*Z+A);
89  G4ParticleHPDataUsed aFile = theNames.GetName(static_cast<G4int>(A), static_cast<G4int>(Z), M, dirName, tString, dbool);
90  G4String filename = aFile.GetName();
91 
92  if(!dbool)
93  {
94  hasAnyData = false;
95  hasFSData = false;
96  hasXsec = false;
97  return;
98  }
99  //std::ifstream theData(filename, std::ios::in);
100  std::istringstream theData(std::ios::in);
101  G4ParticleHPManager::GetInstance()->GetDataStream(filename,theData);
102 
103  // here it comes
104  G4int infoType, dataType;
105  hasFSData = false;
106  while (theData >> infoType) // Loop checking, 11.03.2015, T. Koi
107  {
108  hasFSData = true;
109  theData >> dataType;
110  switch(infoType)
111  {
112  case 1:
113  if(dataType==4) theNeutronAngularDis.Init(theData);
114  if(dataType==5) thePromptNeutronEnDis.Init(theData);
115  if(dataType==12) theFinalStatePhotons.InitMean(theData);
116  if(dataType==14) theFinalStatePhotons.InitAngular(theData);
117  if(dataType==15) theFinalStatePhotons.InitEnergies(theData);
118  break;
119  case 2:
120  if(dataType==1) theFinalStateNeutrons.InitMean(theData);
121  break;
122  case 3:
123  if(dataType==1) theFinalStateNeutrons.InitDelayed(theData);
124  if(dataType==5) theDelayedNeutronEnDis.Init(theData);
125  break;
126  case 4:
127  if(dataType==1) theFinalStateNeutrons.InitPrompt(theData);
128  break;
129  case 5:
130  if(dataType==1) theEnergyRelease.Init(theData);
131  break;
132  default:
133  G4cout << "G4FissionLibrary::Init: unknown data type"<<dataType<<G4endl;
134  throw G4HadronicException(__FILE__, __LINE__, "G4FissionLibrary::Init: unknown data type");
135  break;
136  }
137  }
138  targetMass = theFinalStateNeutrons.GetTargetMass();
139  //theData.close();
140 }
141 
143 {
144 
145  if ( theResult.Get() == NULL ) theResult.Put( new G4HadFinalState );
146  theResult.Get()->Clear();
147 
148  // prepare neutron
149  G4double eKinetic = theTrack.GetKineticEnergy();
150  const G4HadProjectile* incidentParticle = &theTrack;
151  G4ReactionProduct theNeutron(incidentParticle->GetDefinition() );
152  theNeutron.SetMomentum(incidentParticle->Get4Momentum().vect() );
153  theNeutron.SetKineticEnergy(eKinetic);
154 
155  // prepare target
156  G4Nucleus aNucleus;
158  G4ThreeVector neuVelo = (1./incidentParticle->GetDefinition()->GetPDGMass())*theNeutron.GetMomentum();
159  theTarget = aNucleus.GetBiasedThermalNucleus( targetMass, neuVelo, theTrack.GetMaterial()->GetTemperature());
160 
161  // set neutron and target in the FS classes
162  //theNeutronAngularDis.SetNeutron(theNeutron);
163  theNeutronAngularDis.SetProjectileRP(theNeutron);
164  theNeutronAngularDis.SetTarget(theTarget);
165 
166  // boost to target rest system
167  theNeutron.Lorentz(theNeutron, -1*theTarget);
168 
169  eKinetic = theNeutron.GetKineticEnergy();
170 
171  // dice neutron and gamma multiplicities, energies and momenta in Lab. @@
172  // no energy conservation on an event-to-event basis. we rely on the data to be ok. @@
173  // also for mean, we rely on the consistency of the data. @@
174 
175  G4int nPrompt=0, gPrompt=0;
176  SampleMult(theTrack, &nPrompt, &gPrompt, eKinetic);
177 
178  // Build neutrons and add them to dynamic particle vector
179  G4double momentum;
180  for(G4int i=0; i<nPrompt; i++)
181  {
185  momentum = it->GetTotalMomentum();
186  G4ThreeVector temp(momentum*fe->getNeutronDircosu(i),
187  momentum*fe->getNeutronDircosv(i),
188  momentum*fe->getNeutronDircosw(i));
189  it->SetMomentum( temp );
190 // it->SetGlobalTime(fe->getNeutronAge(i)*second);
191  theResult.Get()->AddSecondary(it);
192 // G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt neutron " << i << " = " << it->GetKineticEnergy()<<G4endl;
193  }
194 
195  // Build gammas, lorentz transform them, and add them to dynamic particle vector
196  for(G4int i=0; i<gPrompt; i++)
197  {
198  G4ReactionProduct * thePhoton = new G4ReactionProduct;
199  thePhoton->SetDefinition(G4Gamma::Gamma());
200  thePhoton->SetKineticEnergy(fe->getPhotonEnergy(i)*MeV);
201  momentum = thePhoton->GetTotalMomentum();
202  G4ThreeVector temp(momentum*fe->getPhotonDircosu(i),
203  momentum*fe->getPhotonDircosv(i),
204  momentum*fe->getPhotonDircosw(i));
205  thePhoton->SetMomentum( temp );
206  thePhoton->Lorentz(*thePhoton, -1.*theTarget);
207 
209  it->SetDefinition(thePhoton->GetDefinition());
210  it->SetMomentum(thePhoton->GetMomentum());
211 // it->SetGlobalTime(fe->getPhotonAge(i)*second);
212 // G4cout <<"G4FissionLibrary::ApplyYourself: energy of prompt photon " << i << " = " << it->GetKineticEnergy()<<G4endl;
213  theResult.Get()->AddSecondary(it);
214  delete thePhoton;
215  }
216 // G4cout <<"G4FissionLibrary::ApplyYourself: Number of secondaries = "<<theResult.GetNumberOfSecondaries()<< G4endl;
217 // G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt neutron = "<<nPrompt<<G4endl;
218 // G4cout <<"G4FissionLibrary::ApplyYourself: Number of induced prompt photons = "<<gPrompt<<G4endl;
219 
220  // finally deal with local energy depositions.
221  G4double eDepByFragments = theEnergyRelease.GetFragmentKinetic();
222  theResult.Get()->SetLocalEnergyDeposit(eDepByFragments);
223 // G4cout << "G4FissionLibrary::local energy deposit" << eDepByFragments<<G4endl;
224  // clean up the primary neutron
226  return theResult.Get();
227 }
228 
229 void G4FissionLibrary::SampleMult(const G4HadProjectile & theTrack, G4int* nPrompt,
230  G4int* gPrompt, G4double eKinetic)
231 {
232  G4double promptNeutronMulti = 0;
233  promptNeutronMulti = theFinalStateNeutrons.GetPrompt(eKinetic); // prompt nubar from Geant
234  G4double delayedNeutronMulti = 0;
235  delayedNeutronMulti = theFinalStateNeutrons.GetDelayed(eKinetic); // delayed nubar from Geant
236 
237  G4double time = theTrack.GetGlobalTime()/second;
238  G4double totalNeutronMulti = theFinalStateNeutrons.GetMean(eKinetic);
239  if(delayedNeutronMulti==0&&promptNeutronMulti==0) {
240  // no data for prompt and delayed neutrons in Geant
241  // but there is perhaps data for the total neutron multiplicity, in which case
242  // we use it for prompt neutron emission
243  if (fe != 0) delete fe;
244  fe = new G4fissionEvent(theIsotope, time, totalNeutronMulti, eKinetic);
245  } else {
246  // prompt nubar != 0 || delayed nubar != 0
247  if (fe != 0) delete fe;
248  fe = new G4fissionEvent(theIsotope, time, promptNeutronMulti, eKinetic);
249  }
250  *nPrompt = fe->getNeutronNu();
251  if (*nPrompt == -1) *nPrompt = 0; // the fission library libFission.a has no data for neutrons
252  *gPrompt = fe->getPhotonNu();
253  if (*gPrompt == -1) *gPrompt = 0; // the fission library libFission.a has no data for gammas
254 }
255 
static G4ParticleHPManager * GetInstance()
G4Cache< G4HadFinalState * > theResult
void SetMomentum(const G4ThreeVector &momentum)
G4double GetTotalMomentum() const
void Lorentz(const G4ReactionProduct &p1, const G4ReactionProduct &p2)
void SetKineticEnergy(const G4double en)
void SetMomentum(const G4double x, const G4double y, const G4double z)
value_type & Get() const
Definition: G4Cache.hh:282
void GetDataStream(G4String, std::istringstream &iss)
static constexpr double second
Definition: G4SIunits.hh:157
G4double getPhotonEnergy(G4int index)
int G4int
Definition: G4Types.hh:78
G4double GetPrompt(G4double anEnergy)
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void SetProjectileRP(const G4ReactionProduct &anIncidentParticleRP)
G4double getNeutronEnergy(G4int index)
G4int getNeutronNu()
G4double GetTotalMomentum() const
void SetStatusChange(G4HadFinalStateStatus aS)
void SetTarget(const G4ReactionProduct &aTarget)
const G4ParticleDefinition * GetDefinition() const
G4ReactionProduct GetBiasedThermalNucleus(G4double aMass, G4ThreeVector aVelocity, G4double temp=-1) const
Definition: G4Nucleus.cc:113
Hep3Vector vect() const
G4GLOB_DLL std::ostream G4cout
double A(double temperature)
const G4ParticleDefinition * GetDefinition() const
G4bool InitMean(std::istream &aDataFile)
G4double getNeutronDircosu(G4int index)
bool G4bool
Definition: G4Types.hh:79
G4double GetKineticEnergy() const
void InitDelayed(std::istream &aDataFile)
G4double GetGlobalTime() const
G4ErrorTarget * theTarget
Definition: errprop.cc:59
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
const G4LorentzVector & Get4Momentum() const
void SetKineticEnergy(G4double aEnergy)
G4HadFinalState * ApplyYourself(const G4HadProjectile &theTrack)
G4double GetPDGMass() const
G4double getNeutronDircosv(G4int index)
G4double getPhotonDircosv(G4int index)
G4ThreeVector GetMomentum() const
void Init(std::istream &aDataFile)
void InitMean(std::istream &aDataFile)
G4double GetTemperature() const
Definition: G4Material.hh:182
void SetLocalEnergyDeposit(G4double aE)
#define G4endl
Definition: G4ios.hh:61
G4ParticleHPDataUsed GetName(G4int A, G4int Z, G4String base, G4String rest, G4bool &active)
G4double getPhotonDircosu(G4int index)
static constexpr double MeV
Definition: G4SIunits.hh:214
const G4Material * GetMaterial() const
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
void InitEnergies(std::istream &aDataFile)
double G4double
Definition: G4Types.hh:76
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
void Init(std::istream &aDataFile)
void InitAngular(std::istream &aDataFile)
G4double GetDelayed(G4double anEnergy)
void Put(const value_type &val) const
Definition: G4Cache.hh:286
void Init(G4double A, G4double Z, G4int M, G4String &dirName, G4String &, G4ParticleDefinition *)
G4double GetMean(G4double anEnergy)
G4double getNeutronDircosw(G4int index)
G4double getPhotonDircosw(G4int index)
G4ParticleHPFinalState * New()
void InitPrompt(std::istream &aDataFile)