Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4LivermoreComptonModifiedModel Class Reference

#include <G4LivermoreComptonModifiedModel.hh>

Inheritance diagram for G4LivermoreComptonModifiedModel:
Collaboration diagram for G4LivermoreComptonModifiedModel:

Public Member Functions

 G4LivermoreComptonModifiedModel (const G4ParticleDefinition *p=0, const G4String &nam="LivermoreModifiedCompton")
 
virtual ~G4LivermoreComptonModifiedModel ()
 
virtual void Initialise (const G4ParticleDefinition *, const G4DataVector &)
 
virtual G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, G4double kinEnergy, G4double Z, G4double A=0, G4double cut=0, G4double emax=DBL_MAX)
 
virtual void SampleSecondaries (std::vector< G4DynamicParticle * > *, const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double tmin, G4double maxEnergy)
 
- Public Member Functions inherited from G4VEmModel
 G4VEmModel (const G4String &nam)
 
virtual ~G4VEmModel ()
 
virtual void InitialiseLocal (const G4ParticleDefinition *, G4VEmModel *masterModel)
 
virtual void InitialiseForMaterial (const G4ParticleDefinition *, const G4Material *)
 
virtual void InitialiseForElement (const G4ParticleDefinition *, G4int Z)
 
virtual G4double ComputeDEDXPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
virtual G4double CrossSectionPerVolume (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double GetPartialCrossSection (const G4Material *, G4int level, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double ComputeCrossSectionPerShell (const G4ParticleDefinition *, G4int Z, G4int shellIdx, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
virtual G4double ChargeSquareRatio (const G4Track &)
 
virtual G4double GetChargeSquareRatio (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual G4double GetParticleCharge (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void StartTracking (G4Track *)
 
virtual void CorrectionsAlongStep (const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double &eloss, G4double &niel, G4double length)
 
virtual G4double Value (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy)
 
virtual G4double MinPrimaryEnergy (const G4Material *, const G4ParticleDefinition *, G4double cut=0.0)
 
virtual G4double MinEnergyCut (const G4ParticleDefinition *, const G4MaterialCutsCouple *)
 
virtual void SetupForMaterial (const G4ParticleDefinition *, const G4Material *, G4double kineticEnergy)
 
virtual void DefineForRegion (const G4Region *)
 
virtual void ModelDescription (std::ostream &outFile) const
 
void InitialiseElementSelectors (const G4ParticleDefinition *, const G4DataVector &)
 
std::vector
< G4EmElementSelector * > * 
GetElementSelectors ()
 
void SetElementSelectors (std::vector< G4EmElementSelector * > *)
 
virtual G4double ComputeDEDX (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=DBL_MAX)
 
G4double CrossSection (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeMeanFreePath (const G4ParticleDefinition *, G4double kineticEnergy, const G4Material *, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4double ComputeCrossSectionPerAtom (const G4ParticleDefinition *, const G4Element *, G4double kinEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4int SelectIsotopeNumber (const G4Element *)
 
const G4ElementSelectRandomAtom (const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
const G4ElementSelectRandomAtom (const G4Material *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
 
G4int SelectRandomAtomNumber (const G4Material *)
 
void SetParticleChange (G4VParticleChange *, G4VEmFluctuationModel *f=nullptr)
 
void SetCrossSectionTable (G4PhysicsTable *, G4bool isLocal)
 
G4ElementDataGetElementData ()
 
G4PhysicsTableGetCrossSectionTable ()
 
G4VEmFluctuationModelGetModelOfFluctuations ()
 
G4VEmAngularDistributionGetAngularDistribution ()
 
void SetAngularDistribution (G4VEmAngularDistribution *)
 
G4double HighEnergyLimit () const
 
G4double LowEnergyLimit () const
 
G4double HighEnergyActivationLimit () const
 
G4double LowEnergyActivationLimit () const
 
G4double PolarAngleLimit () const
 
G4double SecondaryThreshold () const
 
G4bool LPMFlag () const
 
G4bool DeexcitationFlag () const
 
G4bool ForceBuildTableFlag () const
 
G4bool UseAngularGeneratorFlag () const
 
void SetAngularGeneratorFlag (G4bool)
 
void SetHighEnergyLimit (G4double)
 
void SetLowEnergyLimit (G4double)
 
void SetActivationHighEnergyLimit (G4double)
 
void SetActivationLowEnergyLimit (G4double)
 
G4bool IsActive (G4double kinEnergy)
 
void SetPolarAngleLimit (G4double)
 
void SetSecondaryThreshold (G4double)
 
void SetLPMFlag (G4bool val)
 
void SetDeexcitationFlag (G4bool val)
 
void SetForceBuildTable (G4bool val)
 
void SetMasterThread (G4bool val)
 
G4bool IsMaster () const
 
G4double MaxSecondaryKinEnergy (const G4DynamicParticle *dynParticle)
 
const G4StringGetName () const
 
void SetCurrentCouple (const G4MaterialCutsCouple *)
 
const G4ElementGetCurrentElement () const
 
const G4IsotopeGetCurrentIsotope () const
 
G4bool IsLocked () const
 
void SetLocked (G4bool)
 

Protected Attributes

G4ParticleChangeForGammafParticleChange
 
- Protected Attributes inherited from G4VEmModel
G4ElementDatafElementData
 
G4VParticleChangepParticleChange
 
G4PhysicsTablexSectionTable
 
const std::vector< G4double > * theDensityFactor
 
const std::vector< G4int > * theDensityIdx
 
size_t idxTable
 

Additional Inherited Members

- Protected Member Functions inherited from G4VEmModel
G4ParticleChangeForLossGetParticleChangeForLoss ()
 
G4ParticleChangeForGammaGetParticleChangeForGamma ()
 
virtual G4double MaxSecondaryEnergy (const G4ParticleDefinition *, G4double kineticEnergy)
 
const G4MaterialCutsCoupleCurrentCouple () const
 
void SetCurrentElement (const G4Element *)
 
- Static Protected Attributes inherited from G4VEmModel
static const G4double inveplus = 1.0/CLHEP::eplus
 

Detailed Description

Definition at line 48 of file G4LivermoreComptonModifiedModel.hh.

Constructor & Destructor Documentation

G4LivermoreComptonModifiedModel::G4LivermoreComptonModifiedModel ( const G4ParticleDefinition p = 0,
const G4String nam = "LivermoreModifiedCompton" 
)

Definition at line 64 of file G4LivermoreComptonModifiedModel.cc.

66  :G4VEmModel(nam),fParticleChange(0),isInitialised(false),
67  scatterFunctionData(0),
68  crossSectionHandler(0),fAtomDeexcitation(0)
69 {
70  verboseLevel=0 ;
71  // Verbosity scale:
72  // 0 = nothing
73  // 1 = warning for energy non-conservation
74  // 2 = details of energy budget
75  // 3 = calculation of cross sections, file openings, sampling of atoms
76  // 4 = entering in methods
77 
78  if( verboseLevel>0 )
79  G4cout << "Livermore Modified Compton model is constructed " << G4endl;
80 
81  //Mark this model as "applicable" for atomic deexcitation
82  SetDeexcitationFlag(true);
83 
84 }
G4VEmModel(const G4String &nam)
Definition: G4VEmModel.cc:68
G4GLOB_DLL std::ostream G4cout
#define G4endl
Definition: G4ios.hh:61
void SetDeexcitationFlag(G4bool val)
Definition: G4VEmModel.hh:780

Here is the call graph for this function:

G4LivermoreComptonModifiedModel::~G4LivermoreComptonModifiedModel ( )
virtual

Definition at line 88 of file G4LivermoreComptonModifiedModel.cc.

89 {
90  delete crossSectionHandler;
91  delete scatterFunctionData;
92 }

Member Function Documentation

G4double G4LivermoreComptonModifiedModel::ComputeCrossSectionPerAtom ( const G4ParticleDefinition ,
G4double  kinEnergy,
G4double  Z,
G4double  A = 0,
G4double  cut = 0,
G4double  emax = DBL_MAX 
)
virtual

Reimplemented from G4VEmModel.

Definition at line 149 of file G4LivermoreComptonModifiedModel.cc.

154 {
155  if (verboseLevel > 3) {
156  G4cout << "Calling ComputeCrossSectionPerAtom() of G4LivermoreComptonModifiedModel" << G4endl;
157  }
158  if (GammaEnergy < LowEnergyLimit())
159  { return 0.0; }
160 
161  G4double cs = crossSectionHandler->FindValue(G4int(Z), GammaEnergy);
162  return cs;
163 }
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:640
int G4int
Definition: G4Types.hh:78
G4double FindValue(G4int Z, G4double e) const
G4GLOB_DLL std::ostream G4cout
#define G4endl
Definition: G4ios.hh:61
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

void G4LivermoreComptonModifiedModel::Initialise ( const G4ParticleDefinition particle,
const G4DataVector cuts 
)
virtual

Implements G4VEmModel.

Definition at line 96 of file G4LivermoreComptonModifiedModel.cc.

98 {
99  if (verboseLevel > 2) {
100  G4cout << "Calling G4LivermoreComptonModifiedModel::Initialise()" << G4endl;
101  }
102 
103  if (crossSectionHandler)
104  {
105  crossSectionHandler->Clear();
106  delete crossSectionHandler;
107  }
108  delete scatterFunctionData;
109 
110  // Reading of data files - all materials are read
111  crossSectionHandler = new G4CrossSectionHandler;
112  G4String crossSectionFile = "comp/ce-cs-";
113  crossSectionHandler->LoadData(crossSectionFile);
114 
115  G4VDataSetAlgorithm* scatterInterpolation = new G4LogLogInterpolation;
116  G4String scatterFile = "comp/ce-sf-";
117  scatterFunctionData = new G4CompositeEMDataSet(scatterInterpolation, 1., 1.);
118  scatterFunctionData->LoadData(scatterFile);
119 
120  // For Doppler broadening
121  shellData.SetOccupancyData();
122  G4String file = "/doppler/shell-doppler";
123  shellData.LoadData(file);
124 
125  InitialiseElementSelectors(particle,cuts);
126 
127  if (verboseLevel > 2) {
128  G4cout << "Loaded cross section files for Livermore Modified Compton model" << G4endl;
129  }
130 
131  if(isInitialised) { return; }
132  isInitialised = true;
133 
135 
136  fAtomDeexcitation = G4LossTableManager::Instance()->AtomDeexcitation();
137 
138  if( verboseLevel>0 ) {
139  G4cout << "Livermore modified Compton model is initialized " << G4endl
140  << "Energy range: "
141  << LowEnergyLimit() / eV << " eV - "
142  << HighEnergyLimit() / GeV << " GeV"
143  << G4endl;
144  }
145 }
void SetOccupancyData()
Definition: G4ShellData.hh:70
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:640
static G4LossTableManager * Instance()
void InitialiseElementSelectors(const G4ParticleDefinition *, const G4DataVector &)
Definition: G4VEmModel.cc:146
G4double HighEnergyLimit() const
Definition: G4VEmModel.hh:633
void LoadData(const G4String &fileName)
Definition: G4ShellData.cc:234
G4GLOB_DLL std::ostream G4cout
static constexpr double eV
Definition: G4SIunits.hh:215
void LoadData(const G4String &dataFile)
static constexpr double GeV
Definition: G4SIunits.hh:217
virtual G4bool LoadData(const G4String &fileName)=0
#define G4endl
Definition: G4ios.hh:61
G4VAtomDeexcitation * AtomDeexcitation()
G4ParticleChangeForGamma * GetParticleChangeForGamma()
Definition: G4VEmModel.cc:132

Here is the call graph for this function:

void G4LivermoreComptonModifiedModel::SampleSecondaries ( std::vector< G4DynamicParticle * > *  fvect,
const G4MaterialCutsCouple couple,
const G4DynamicParticle aDynamicGamma,
G4double  tmin,
G4double  maxEnergy 
)
virtual

Implements G4VEmModel.

Definition at line 167 of file G4LivermoreComptonModifiedModel.cc.

171 {
172 
173  // The scattered gamma energy is sampled according to Klein - Nishina formula.
174  // then accepted or rejected depending on the Scattering Function multiplied
175  // by factor from Klein - Nishina formula.
176  // Expression of the angular distribution as Klein Nishina
177  // angular and energy distribution and Scattering fuctions is taken from
178  // D. E. Cullen "A simple model of photon transport" Nucl. Instr. Meth.
179  // Phys. Res. B 101 (1995). Method of sampling with form factors is different
180  // data are interpolated while in the article they are fitted.
181  // Reference to the article is from J. Stepanek New Photon, Positron
182  // and Electron Interaction Data for GEANT in Energy Range from 1 eV to 10
183  // TeV (draft).
184  // The random number techniques of Butcher & Messel are used
185  // (Nucl Phys 20(1960),15).
186 
187  G4double photonEnergy0 = aDynamicGamma->GetKineticEnergy();
188 
189  if (verboseLevel > 3) {
190  G4cout << "G4LivermoreComptonModifiedModel::SampleSecondaries() E(MeV)= "
191  << photonEnergy0/MeV << " in " << couple->GetMaterial()->GetName()
192  << G4endl;
193  }
194 
195  // do nothing below the threshold
196  // should never get here because the XS is zero below the limit
197  if (photonEnergy0 < LowEnergyLimit())
198  return ;
199 
200  G4double e0m = photonEnergy0 / electron_mass_c2 ;
201  G4ParticleMomentum photonDirection0 = aDynamicGamma->GetMomentumDirection();
202 
203  // Select randomly one element in the current material
204  const G4ParticleDefinition* particle = aDynamicGamma->GetDefinition();
205  const G4Element* elm = SelectRandomAtom(couple,particle,photonEnergy0);
206  G4int Z = (G4int)elm->GetZ();
207 
208  G4double epsilon0Local = 1. / (1. + 2. * e0m);
209  G4double epsilon0Sq = epsilon0Local * epsilon0Local;
210  G4double alpha1 = -std::log(epsilon0Local);
211  G4double alpha2 = 0.5 * (1. - epsilon0Sq);
212 
213  G4double wlPhoton = h_Planck*c_light/photonEnergy0;
214 
215  // Sample the energy of the scattered photon
217  G4double epsilonSq;
218  G4double oneCosT;
219  G4double sinT2;
220  G4double gReject;
221 
222  do
223  {
224  if ( alpha1/(alpha1+alpha2) > G4UniformRand())
225  {
226  // std::pow(epsilon0Local,G4UniformRand())
227  epsilon = G4Exp(-alpha1 * G4UniformRand());
228  epsilonSq = epsilon * epsilon;
229  }
230  else
231  {
232  epsilonSq = epsilon0Sq + (1. - epsilon0Sq) * G4UniformRand();
233  epsilon = std::sqrt(epsilonSq);
234  }
235 
236  oneCosT = (1. - epsilon) / ( epsilon * e0m);
237  sinT2 = oneCosT * (2. - oneCosT);
238  G4double x = std::sqrt(oneCosT/2.) / (wlPhoton/cm);
239  G4double scatteringFunction = scatterFunctionData->FindValue(x,Z-1);
240  gReject = (1. - epsilon * sinT2 / (1. + epsilonSq)) * scatteringFunction;
241 
242  } while(gReject < G4UniformRand()*Z);
243 
244  G4double cosTheta = 1. - oneCosT;
245  G4double sinTheta = std::sqrt (sinT2);
246  G4double phi = twopi * G4UniformRand() ;
247  G4double dirx = sinTheta * std::cos(phi);
248  G4double diry = sinTheta * std::sin(phi);
249  G4double dirz = cosTheta ;
250 
251  // Doppler broadening - Method based on:
252  // Y. Namito, S. Ban and H. Hirayama,
253  // "Implementation of the Doppler Broadening of a Compton-Scattered Photon
254  // into the EGS4 Code", NIM A 349, pp. 489-494, 1994
255 
256  // Maximum number of sampling iterations
257  G4int maxDopplerIterations = 1000;
258  G4double bindingE = 0.;
259  G4double photonEoriginal = epsilon * photonEnergy0;
260  G4double photonE = -1.;
261  G4int iteration = 0;
262  G4double systemE = 0;
263  G4double ePAU = -1;
264  G4int shellIdx = 0;
265  G4double vel_c = 299792458;
266  G4double momentum_au_to_nat = 1.992851740*std::pow(10.,-24.);
267  G4double e_mass_kg = 9.10938188 * std::pow(10.,-31.);
268  G4double eMax = -1;
269  G4double Alpha=0;
270  do
271  {
272  ++iteration;
273  // Select shell based on shell occupancy
274  shellIdx = shellData.SelectRandomShell(Z);
275  bindingE = shellData.BindingEnergy(Z,shellIdx);
276 
277 
278 
279  // Randomly sample bound electron momentum
280  // (memento: the data set is in Atomic Units)
281  G4double pSample = profileData.RandomSelectMomentum(Z,shellIdx);
282  // Rescale from atomic units
283 
284 
285  //Kinetic energy of target electron
286 
287 
288  // Reverse vector projection onto scattering vector
289 
290  do {
291  Alpha = G4UniformRand()*pi/2.0;
292  } while(Alpha >= (pi/2.0));
293 
294  ePAU = pSample / std::cos(Alpha);
295 
296  // Convert to SI and the calculate electron energy in natural units
297 
298  G4double ePSI = ePAU * momentum_au_to_nat;
299  G4double u_temp = sqrt( ((ePSI*ePSI)*(vel_c*vel_c)) / ((e_mass_kg*e_mass_kg)*(vel_c*vel_c)+(ePSI*ePSI)))/vel_c;
300  G4double eEIncident = electron_mass_c2 / sqrt( 1 - (u_temp*u_temp));
301 
302  //Total energy of the system
303  systemE = eEIncident+photonEnergy0;
304 
305  eMax = systemE - bindingE - electron_mass_c2;
306  G4double pDoppler = pSample * fine_structure_const;
307  G4double pDoppler2 = pDoppler * pDoppler;
308  G4double var2 = 1. + oneCosT * e0m;
309  G4double var3 = var2*var2 - pDoppler2;
310  G4double var4 = var2 - pDoppler2 * cosTheta;
311  G4double var = var4*var4 - var3 + pDoppler2 * var3;
312  if (var > 0.)
313  {
314  G4double varSqrt = std::sqrt(var);
315  G4double scale = photonEnergy0 / var3;
316  // Random select either root
317  if (G4UniformRand() < 0.5) { photonE = (var4 - varSqrt) * scale; }
318  else { photonE = (var4 + varSqrt) * scale; }
319  }
320  else
321  {
322  photonE = -1.;
323  }
324  } while ( iteration <= maxDopplerIterations &&
325  (photonE < 0. || photonE > eMax ) );
326 
327  // End of recalculation of photon energy with Doppler broadening
328  // Kinematics of the scattered electron
329  G4double eKineticEnergy = systemE - photonE - bindingE - electron_mass_c2;
330 
331  // protection against negative final energy: no e- is created
332  G4double eDirX = 0.0;
333  G4double eDirY = 0.0;
334  G4double eDirZ = 1.0;
335 
336  if(eKineticEnergy < 0.0) {
337  G4cout << "Error, kinetic energy of electron less than zero" << G4endl;
338  }
339 
340  else{
341  // Estimation of Compton electron polar angle taken from:
342  // The EGSnrc Code System: Monte Carlo Simulation of Electron and Photon Transport
343  // Eqn 2.2.25 Pg 42, NRCC Report PIRS-701
344  G4double E_num = photonEnergy0 - photonE*cosTheta;
345  G4double E_dom = sqrt(photonEnergy0*photonEnergy0 + photonE*photonE -2*photonEnergy0*photonE*cosTheta);
346  G4double cosThetaE = E_num / E_dom;
347  G4double sinThetaE = -sqrt((1. - cosThetaE) * (1. + cosThetaE));
348 
349  eDirX = sinThetaE * std::cos(phi);
350  eDirY = sinThetaE * std::sin(phi);
351  eDirZ = cosThetaE;
352 
353  G4ThreeVector eDirection(eDirX,eDirY,eDirZ);
354  eDirection.rotateUz(photonDirection0);
356  eDirection,eKineticEnergy) ;
357  fvect->push_back(dp);
358  }
359 
360 
361  // Revert to original if maximum number of iterations threshold has been reached
362 
363  if (iteration >= maxDopplerIterations)
364  {
365  photonE = photonEoriginal;
366  bindingE = 0.;
367  }
368 
369  // Update G4VParticleChange for the scattered photon
370 
371  G4ThreeVector photonDirection1(dirx,diry,dirz);
372  photonDirection1.rotateUz(photonDirection0);
373  fParticleChange->ProposeMomentumDirection(photonDirection1) ;
374 
375  G4double photonEnergy1 = photonE;
376 
377  if (photonEnergy1 > 0.)
378  {
379  fParticleChange->SetProposedKineticEnergy(photonEnergy1) ;
380 
381  if (iteration < maxDopplerIterations)
382  {
383  G4ThreeVector eDirection(eDirX,eDirY,eDirZ);
384  eDirection.rotateUz(photonDirection0);
386  eDirection,eKineticEnergy) ;
387  fvect->push_back(dp);
388  }
389  }
390  else
391  {
392  photonEnergy1 = 0.;
395  }
396 
397  // sample deexcitation
398  //
399  if(fAtomDeexcitation && iteration < maxDopplerIterations) {
400  G4int index = couple->GetIndex();
401  if(fAtomDeexcitation->CheckDeexcitationActiveRegion(index)) {
402  size_t nbefore = fvect->size();
404  const G4AtomicShell* shell = fAtomDeexcitation->GetAtomicShell(Z, as);
405  fAtomDeexcitation->GenerateParticles(fvect, shell, Z, index);
406  size_t nafter = fvect->size();
407  if(nafter > nbefore) {
408  for (size_t i=nbefore; i<nafter; ++i) {
409  bindingE -= ((*fvect)[i])->GetKineticEnergy();
410  }
411  }
412  }
413  }
414  if(bindingE < 0.0) { bindingE = 0.0; }
416 }
G4double LowEnergyLimit() const
Definition: G4VEmModel.hh:640
static constexpr double h_Planck
virtual G4double FindValue(G4double x, G4int componentId=0) const =0
G4bool CheckDeexcitationActiveRegion(G4int coupleIndex)
G4double GetKineticEnergy() const
const G4String & GetName() const
Definition: G4Material.hh:178
G4double GetZ() const
Definition: G4Element.hh:131
G4ParticleDefinition * GetDefinition() const
int G4int
Definition: G4Types.hh:78
void ProposeMomentumDirection(G4double Px, G4double Py, G4double Pz)
G4int SelectRandomShell(G4int Z) const
Definition: G4ShellData.cc:363
void ProposeLocalEnergyDeposit(G4double anEnergyPart)
static constexpr double twopi
Definition: G4SIunits.hh:76
static constexpr double electron_mass_c2
virtual const G4AtomicShell * GetAtomicShell(G4int Z, G4AtomicShellEnumerator shell)=0
#define G4UniformRand()
Definition: Randomize.hh:97
G4GLOB_DLL std::ostream G4cout
const G4ThreeVector & GetMomentumDirection() const
G4double BindingEnergy(G4int Z, G4int shellIndex) const
Definition: G4ShellData.cc:166
static constexpr double cm
Definition: G4SIunits.hh:119
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
static constexpr double c_light
static G4Electron * Electron()
Definition: G4Electron.cc:94
void SetProposedKineticEnergy(G4double proposedKinEnergy)
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
static constexpr double pi
Definition: G4SIunits.hh:75
double G4double
Definition: G4Types.hh:76
void ProposeTrackStatus(G4TrackStatus status)
void GenerateParticles(std::vector< G4DynamicParticle * > *secVect, const G4AtomicShell *, G4int Z, G4int coupleIndex)
static constexpr double fine_structure_const
double epsilon(double density, double temperature)
G4double RandomSelectMomentum(G4int Z, G4int shellIndex) const
G4AtomicShellEnumerator
const G4Element * SelectRandomAtom(const G4MaterialCutsCouple *, const G4ParticleDefinition *, G4double kineticEnergy, G4double cutEnergy=0.0, G4double maxEnergy=DBL_MAX)
Definition: G4VEmModel.hh:541
const G4Material * GetMaterial() const

Here is the call graph for this function:

Member Data Documentation

G4ParticleChangeForGamma* G4LivermoreComptonModifiedModel::fParticleChange
protected

Definition at line 75 of file G4LivermoreComptonModifiedModel.hh.


The documentation for this class was generated from the following files: