Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4INCL::DeltaProductionChannel Class Reference

#include <G4INCLDeltaProductionChannel.hh>

Inheritance diagram for G4INCL::DeltaProductionChannel:
Collaboration diagram for G4INCL::DeltaProductionChannel:

Public Member Functions

 DeltaProductionChannel (Particle *, Particle *)
 
virtual ~DeltaProductionChannel ()
 
void fillFinalState (FinalState *fs)
 
- Public Member Functions inherited from G4INCL::IChannel
 IChannel ()
 
virtual ~IChannel ()
 
FinalStategetFinalState ()
 

Detailed Description

Definition at line 48 of file G4INCLDeltaProductionChannel.hh.

Constructor & Destructor Documentation

G4INCL::DeltaProductionChannel::DeltaProductionChannel ( Particle p1,
Particle p2 
)

Definition at line 49 of file G4INCLDeltaProductionChannel.cc.

51  : particle1(p1), particle2(p2)
52  {}
G4INCL::DeltaProductionChannel::~DeltaProductionChannel ( )
virtual

Definition at line 54 of file G4INCLDeltaProductionChannel.cc.

54 {}

Member Function Documentation

void G4INCL::DeltaProductionChannel::fillFinalState ( FinalState fs)
virtual

Delta production

The production is not isotropic in this version it has the same exp(b*t) structure as the nn elastic scattering (formula 2.3 of j.cugnon et al, nucl phys a352(1981)505) parametrization of b taken from ref. prc56(1997)2431

Implements G4INCL::IChannel.

Definition at line 95 of file G4INCLDeltaProductionChannel.cc.

95  {
104  // 100 IF (K4.NE.1) GO TO 101 // ThA K4 = 2 by default
105  // ParticleType p1TypeOld = particle1->getType();
106  // ParticleType p2TypeOld = particle2->getType();
107  G4double ecm = KinematicsUtils::totalEnergyInCM(particle1, particle2);
108 
109  const G4int isospin = ParticleTable::getIsospin(particle1->getType()) +
110  ParticleTable::getIsospin(particle2->getType());
111 
112  // Calculate the outcome of the channel:
113  const ThreeVector &particle1Momentum = particle1->getMomentum();
114  G4double pin = particle1Momentum.mag();
115  G4double rndm = 0.0, b = 0.0;
116 
117  G4double xmdel = sampleDeltaMass(ecm);
118  // deltaProduction103: // This label is not used
120  if (pnorm <= 0.0) pnorm=0.000001;
121  G4int index=0;
122  G4int index2=0;
123  rndm = Random::shoot();
124  if (rndm < 0.5) index=1;
125  if (isospin == 0) { // pn case
126  rndm = Random::shoot();
127  if (rndm < 0.5) index2=1;
128  }
129 
130  // G4double x=0.001*0.5*ecm*std::sqrt(ecm*ecm-4.*ParticleTable::effectiveNucleonMass2)
131  // / ParticleTable::effectiveNucleonMass;
133  if(x < 1.4) {
134  b=(5.287/(1.+std::exp((1.3-x)/0.05)))*1.e-6;
135  } else {
136  b=(4.65+0.706*(x-1.4))*1.e-6;
137  }
138  G4double xkh = 2.*b*pin*pnorm;
139  rndm = Random::shoot();
140  G4double ctet=1.0+std::log(1.-rndm*(1.-std::exp(-2.*xkh)))/xkh;
141  if(std::abs(ctet) > 1.0) ctet = Math::sign(ctet);
142  G4double stet = std::sqrt(1.-ctet*ctet);
143 
144  rndm = Random::shoot();
145  G4double fi = Math::twoPi*rndm;
146  G4double cfi = std::cos(fi);
147  G4double sfi = std::sin(fi);
148  // delta production: correction of the angular distribution 02/09/02
149 
150  G4double xx = particle1Momentum.perp2();
151  const G4double particle1MomentumZ = particle1Momentum.getZ();
152  G4double zz = std::pow(particle1MomentumZ, 2);
153  G4double xp1, xp2, xp3;
154  if (xx >= zz*1.e-8) {
155  G4double yn = std::sqrt(xx);
156  G4double zn = yn*pin;
157  G4double ex[3], ey[3], ez[3];
158  G4double p1 = particle1Momentum.getX();
159  G4double p2 = particle1Momentum.getY();
160  G4double p3 = particle1MomentumZ;
161  ez[0] = p1/pin;
162  ez[1] = p2/pin;
163  ez[2] = p3/pin;
164  ex[0] = p2/yn;
165  ex[1] = -p1/yn;
166  ex[2] = 0.0;
167  ey[0] = p1*p3/zn;
168  ey[1] = p2*p3/zn;
169  ey[2] = -xx/zn;
170  xp1 = (ex[0]*cfi*stet+ey[0]*sfi*stet+ez[0]*ctet)*pnorm;
171  xp2 = (ex[1]*cfi*stet+ey[1]*sfi*stet+ez[1]*ctet)*pnorm;
172  xp3 = (ex[2]*cfi*stet+ey[2]*sfi*stet+ez[2]*ctet)*pnorm;
173  }else {
174  xp1=pnorm*stet*cfi;
175  xp2=pnorm*stet*sfi;
176  xp3=pnorm*ctet;
177  }
178  // end of correction angular distribution of delta production
179  G4double e3 = std::sqrt(xp1*xp1+xp2*xp2+xp3*xp3
181  // if(k4.ne.0) go to 161
182 
183  // long-lived delta
184  if (index != 1) {
185  ThreeVector mom(xp1, xp2, xp3);
186  particle1->setMomentum(mom);
187  // e1=ecm-eout1
188  } else {
189  ThreeVector mom(-xp1, -xp2, -xp3);
190  particle1->setMomentum(mom);
191  // e1=ecm-eout1
192  }
193 
194  particle1->setEnergy(ecm - e3);
195  particle2->setEnergy(e3);
196  particle2->setMomentum(-particle1->getMomentum());
197 
198  // SYMMETRIZATION OF CHARGES IN pn -> N DELTA
199  // THE TEST ON "INDEX" ABOVE SYMETRIZES THE EXCITATION OF ONE
200  // OF THE NUCLEONS WITH RESPECT TO THE DELTA EXCITATION
201  // (SEE NOTE 16/10/97)
202  G4int is1 = ParticleTable::getIsospin(particle1->getType());
203  G4int is2 = ParticleTable::getIsospin(particle2->getType());
204  if (isospin == 0) {
205  if(index2 == 1) {
206  G4int isi=is1;
207  is1=is2;
208  is2=isi;
209  }
210  particle1->setHelicity(0.0);
211  } else {
212  rndm = Random::shoot();
213  if (rndm >= 0.25) {
214  is1=3*is1;
215  is2=-is2;
216  }
217  particle1->setHelicity(ctet*ctet);
218  }
219 
221  particle1->setType(DeltaMinus);
222  } else if(is1 == ParticleTable::getIsospin(DeltaZero)) {
223  particle1->setType(DeltaZero);
224  } else if(is1 == ParticleTable::getIsospin(DeltaPlus)) {
225  particle1->setType(DeltaPlus);
226  } else if(is1 == ParticleTable::getIsospin(DeltaPlusPlus)) {
227  particle1->setType(DeltaPlusPlus);
228  }
229 
230  if(is2 == ParticleTable::getIsospin(Proton)) {
231  particle2->setType(Proton);
232  } else if(is2 == ParticleTable::getIsospin(Neutron)) {
233  particle2->setType(Neutron);
234  }
235 
236  if(particle1->isDelta()) particle1->setMass(xmdel);
237  if(particle2->isDelta()) particle2->setMass(xmdel);
238 
239  fs->addModifiedParticle(particle1);
240  fs->addModifiedParticle(particle2);
241  }
void setMass(G4double mass)
const G4INCL::ThreeVector & getMomentum() const
G4bool isDelta() const
Is it a Delta?
G4double momentumInCM(Particle const *const p1, Particle const *const p2)
gives the momentum in the CM frame of two particles.
int G4int
Definition: G4Types.hh:78
void setEnergy(G4double energy)
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
const G4double effectiveNucleonMass2
G4INCL::ParticleType getType() const
void setType(ParticleType t)
const G4double twoPi
G4double shoot()
Definition: G4INCLRandom.cc:93
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
G4double mag() const
double G4double
Definition: G4Types.hh:76
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4int sign(const T t)
const G4double effectiveNucleonMass
void setHelicity(G4double h)
virtual void setMomentum(const G4INCL::ThreeVector &momentum)

Here is the call graph for this function:


The documentation for this class was generated from the following files: