Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4INCLDeltaProductionChannel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Alain Boudard, CEA-Saclay, France
28 // Joseph Cugnon, University of Liege, Belgium
29 // Jean-Christophe David, CEA-Saclay, France
30 // Pekka Kaitaniemi, CEA-Saclay, France, and Helsinki Institute of Physics, Finland
31 // Sylvie Leray, CEA-Saclay, France
32 // Davide Mancusi, CEA-Saclay, France
33 //
34 #define INCLXX_IN_GEANT4_MODE 1
35 
36 #include "globals.hh"
37 
39 #include "G4INCLKinematicsUtils.hh"
41 #include "G4INCLRandom.hh"
42 #include "G4INCLGlobals.hh"
43 #include "G4INCLLogger.hh"
44 
45 namespace G4INCL {
46 
47  const G4int DeltaProductionChannel::maxTries = 100000;
48 
50  Particle *p2)
51  : particle1(p1), particle2(p2)
52  {}
53 
55 
56  G4double DeltaProductionChannel::sampleDeltaMass(G4double ecm) {
57  const G4double maxDeltaMass = ecm - ParticleTable::effectiveNucleonMass - 1.0;
58  const G4double maxDeltaMassRndm = std::atan((maxDeltaMass-ParticleTable::effectiveDeltaMass)*2./ParticleTable::effectiveDeltaWidth);
59  const G4double deltaMassRndmRange = maxDeltaMassRndm - ParticleTable::minDeltaMassRndm;
60 // assert(deltaMassRndmRange>0.);
61 
62  G4double y=ecm*ecm;
63  G4double q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
64  G4double q3=std::pow(std::sqrt(q2), 3.);
65  const G4double f3max=q3/(q3+5.832E6); // 5.832E6 = 180^3
66  G4double x;
67 
68  G4int nTries = 0;
69  G4bool success = false;
70  while(!success) { /* Loop checking, 10.07.2015, D.Mancusi */
71  if(++nTries >= maxTries) {
72  INCL_WARN("DeltaProductionChannel::sampleDeltaMass loop was stopped because maximum number of tries was reached. Minimum delta mass "
73  << ParticleTable::minDeltaMass << " MeV with CM energy " << ecm << " MeV may be unphysical." << '\n');
75  }
76 
77  G4double rndm = ParticleTable::minDeltaMassRndm + Random::shoot() * deltaMassRndmRange;
78  y = std::tan(rndm);
80 // assert(x>=ParticleTable::minDeltaMass && ecm >= x + ParticleTable::effectiveNucleonMass + 1.0);
81 
82  // generation of the delta mass with the penetration factor
83  // (see prc56(1997)2431)
84  y=x*x;
85  q2=(y-1.157776E6)*(y-6.4E5)/y/4.0; // 1.157776E6 = 1076^2, 6.4E5 = 800^2
86  q3=std::pow(std::sqrt(q2), 3.);
87  const G4double f3=q3/(q3+5.832E6); // 5.832E6 = 180^3
88  rndm = Random::shoot();
89  if (rndm*f3max < f3)
90  success = true;
91  }
92  return x;
93  }
94 
104  // 100 IF (K4.NE.1) GO TO 101 // ThA K4 = 2 by default
105  // ParticleType p1TypeOld = particle1->getType();
106  // ParticleType p2TypeOld = particle2->getType();
107  G4double ecm = KinematicsUtils::totalEnergyInCM(particle1, particle2);
108 
109  const G4int isospin = ParticleTable::getIsospin(particle1->getType()) +
110  ParticleTable::getIsospin(particle2->getType());
111 
112  // Calculate the outcome of the channel:
113  const ThreeVector &particle1Momentum = particle1->getMomentum();
114  G4double pin = particle1Momentum.mag();
115  G4double rndm = 0.0, b = 0.0;
116 
117  G4double xmdel = sampleDeltaMass(ecm);
118  // deltaProduction103: // This label is not used
120  if (pnorm <= 0.0) pnorm=0.000001;
121  G4int index=0;
122  G4int index2=0;
123  rndm = Random::shoot();
124  if (rndm < 0.5) index=1;
125  if (isospin == 0) { // pn case
126  rndm = Random::shoot();
127  if (rndm < 0.5) index2=1;
128  }
129 
130  // G4double x=0.001*0.5*ecm*std::sqrt(ecm*ecm-4.*ParticleTable::effectiveNucleonMass2)
131  // / ParticleTable::effectiveNucleonMass;
133  if(x < 1.4) {
134  b=(5.287/(1.+std::exp((1.3-x)/0.05)))*1.e-6;
135  } else {
136  b=(4.65+0.706*(x-1.4))*1.e-6;
137  }
138  G4double xkh = 2.*b*pin*pnorm;
139  rndm = Random::shoot();
140  G4double ctet=1.0+std::log(1.-rndm*(1.-std::exp(-2.*xkh)))/xkh;
141  if(std::abs(ctet) > 1.0) ctet = Math::sign(ctet);
142  G4double stet = std::sqrt(1.-ctet*ctet);
143 
144  rndm = Random::shoot();
145  G4double fi = Math::twoPi*rndm;
146  G4double cfi = std::cos(fi);
147  G4double sfi = std::sin(fi);
148  // delta production: correction of the angular distribution 02/09/02
149 
150  G4double xx = particle1Momentum.perp2();
151  const G4double particle1MomentumZ = particle1Momentum.getZ();
152  G4double zz = std::pow(particle1MomentumZ, 2);
153  G4double xp1, xp2, xp3;
154  if (xx >= zz*1.e-8) {
155  G4double yn = std::sqrt(xx);
156  G4double zn = yn*pin;
157  G4double ex[3], ey[3], ez[3];
158  G4double p1 = particle1Momentum.getX();
159  G4double p2 = particle1Momentum.getY();
160  G4double p3 = particle1MomentumZ;
161  ez[0] = p1/pin;
162  ez[1] = p2/pin;
163  ez[2] = p3/pin;
164  ex[0] = p2/yn;
165  ex[1] = -p1/yn;
166  ex[2] = 0.0;
167  ey[0] = p1*p3/zn;
168  ey[1] = p2*p3/zn;
169  ey[2] = -xx/zn;
170  xp1 = (ex[0]*cfi*stet+ey[0]*sfi*stet+ez[0]*ctet)*pnorm;
171  xp2 = (ex[1]*cfi*stet+ey[1]*sfi*stet+ez[1]*ctet)*pnorm;
172  xp3 = (ex[2]*cfi*stet+ey[2]*sfi*stet+ez[2]*ctet)*pnorm;
173  }else {
174  xp1=pnorm*stet*cfi;
175  xp2=pnorm*stet*sfi;
176  xp3=pnorm*ctet;
177  }
178  // end of correction angular distribution of delta production
179  G4double e3 = std::sqrt(xp1*xp1+xp2*xp2+xp3*xp3
181  // if(k4.ne.0) go to 161
182 
183  // long-lived delta
184  if (index != 1) {
185  ThreeVector mom(xp1, xp2, xp3);
186  particle1->setMomentum(mom);
187  // e1=ecm-eout1
188  } else {
189  ThreeVector mom(-xp1, -xp2, -xp3);
190  particle1->setMomentum(mom);
191  // e1=ecm-eout1
192  }
193 
194  particle1->setEnergy(ecm - e3);
195  particle2->setEnergy(e3);
196  particle2->setMomentum(-particle1->getMomentum());
197 
198  // SYMMETRIZATION OF CHARGES IN pn -> N DELTA
199  // THE TEST ON "INDEX" ABOVE SYMETRIZES THE EXCITATION OF ONE
200  // OF THE NUCLEONS WITH RESPECT TO THE DELTA EXCITATION
201  // (SEE NOTE 16/10/97)
202  G4int is1 = ParticleTable::getIsospin(particle1->getType());
203  G4int is2 = ParticleTable::getIsospin(particle2->getType());
204  if (isospin == 0) {
205  if(index2 == 1) {
206  G4int isi=is1;
207  is1=is2;
208  is2=isi;
209  }
210  particle1->setHelicity(0.0);
211  } else {
212  rndm = Random::shoot();
213  if (rndm >= 0.25) {
214  is1=3*is1;
215  is2=-is2;
216  }
217  particle1->setHelicity(ctet*ctet);
218  }
219 
221  particle1->setType(DeltaMinus);
222  } else if(is1 == ParticleTable::getIsospin(DeltaZero)) {
223  particle1->setType(DeltaZero);
224  } else if(is1 == ParticleTable::getIsospin(DeltaPlus)) {
225  particle1->setType(DeltaPlus);
226  } else if(is1 == ParticleTable::getIsospin(DeltaPlusPlus)) {
227  particle1->setType(DeltaPlusPlus);
228  }
229 
230  if(is2 == ParticleTable::getIsospin(Proton)) {
231  particle2->setType(Proton);
232  } else if(is2 == ParticleTable::getIsospin(Neutron)) {
233  particle2->setType(Neutron);
234  }
235 
236  if(particle1->isDelta()) particle1->setMass(xmdel);
237  if(particle2->isDelta()) particle2->setMass(xmdel);
238 
239  fs->addModifiedParticle(particle1);
240  fs->addModifiedParticle(particle2);
241  }
242 }
void setMass(G4double mass)
G4ThreadLocal G4double minDeltaMassRndm
const G4INCL::ThreeVector & getMomentum() const
G4bool isDelta() const
Is it a Delta?
#define INCL_WARN(x)
G4double momentumInCM(Particle const *const p1, Particle const *const p2)
gives the momentum in the CM frame of two particles.
int G4int
Definition: G4Types.hh:78
void setEnergy(G4double energy)
bool G4bool
Definition: G4Types.hh:79
const G4double effectiveDeltaWidth
G4ThreadLocal G4double minDeltaMass
G4int getIsospin(const ParticleType t)
Get the isospin of a particle.
const G4double effectiveNucleonMass2
G4INCL::ParticleType getType() const
void setType(ParticleType t)
const G4double twoPi
G4double shoot()
Definition: G4INCLRandom.cc:93
G4double momentumInLab(Particle const *const p1, Particle const *const p2)
gives the momentum in the lab frame of two particles.
G4double mag() const
const G4double effectiveDeltaMass
double G4double
Definition: G4Types.hh:76
G4double totalEnergyInCM(Particle const *const p1, Particle const *const p2)
G4int sign(const T t)
const G4double effectiveNucleonMass
void addModifiedParticle(Particle *p)
void setHelicity(G4double h)
virtual void setMomentum(const G4INCL::ThreeVector &momentum)