Geant4  10.03.p01
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
G4StatMFMicroPartition.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4StatMFMicroPartition.cc 100379 2016-10-19 15:05:35Z gcosmo $
28 //
29 // by V. Lara
30 // --------------------------------------------------------------------
31 
33 #include "G4PhysicalConstants.hh"
34 #include "G4SystemOfUnits.hh"
35 #include "G4HadronicException.hh"
36 #include "Randomize.hh"
37 #include "G4Log.hh"
38 #include "G4Exp.hh"
39 #include "G4Pow.hh"
40 
41 // Copy constructor
43 {
44  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::copy_constructor meant to not be accessable");
45 }
46 
47 // Operators
48 
49 G4StatMFMicroPartition & G4StatMFMicroPartition::
50 operator=(const G4StatMFMicroPartition & )
51 {
52  throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::operator= meant to not be accessable");
53  return *this;
54 }
55 
56 
58 {
59  //throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::operator== meant to not be accessable");
60  return false;
61 }
62 
63 
65 {
66  //throw G4HadronicException(__FILE__, __LINE__, "G4StatMFMicroPartition::operator!= meant to not be accessable");
67  return true;
68 }
69 
70 void G4StatMFMicroPartition::CoulombFreeEnergy(G4int anA)
71 {
72  // This Z independent factor in the Coulomb free energy
73  G4double CoulombConstFactor = G4StatMFParameters::GetCoulomb();
74 
75  // We use the aproximation Z_f ~ Z/A * A_f
76 
77  G4double ZA = G4double(theZ)/G4double(theA);
78 
79  if (anA == 0 || anA == 1)
80  {
81  _theCoulombFreeEnergy.push_back(CoulombConstFactor*ZA*ZA);
82  }
83  else if (anA == 2 || anA == 3 || anA == 4)
84  {
85  // Z/A ~ 1/2
86  _theCoulombFreeEnergy.push_back(CoulombConstFactor*0.5
87  *anA*G4Pow::GetInstance()->Z23(anA));
88  }
89  else // anA > 4
90  {
91  _theCoulombFreeEnergy.push_back(CoulombConstFactor*ZA*ZA
92  *anA*G4Pow::GetInstance()->Z23(anA));
93  }
94 }
95 
96 G4double G4StatMFMicroPartition::GetCoulombEnergy(void)
97 {
98  G4Pow* g4calc = G4Pow::GetInstance();
99  G4double CoulombFactor = 1.0/g4calc->A13(1.0+G4StatMFParameters::GetKappaCoulomb());
100 
101  G4double CoulombEnergy = elm_coupling*0.6*theZ*theZ*CoulombFactor/
102  (G4StatMFParameters::Getr0()*g4calc->Z13(theA));
103 
104  G4double ZA = G4double(theZ)/G4double(theA);
105  for (unsigned int i = 0; i < _thePartition.size(); i++)
106  CoulombEnergy += _theCoulombFreeEnergy[i] - elm_coupling*0.6*
107  ZA*ZA*_thePartition[i]*g4calc->Z23(_thePartition[i])/
109 
110  return CoulombEnergy;
111 }
112 
113 G4double G4StatMFMicroPartition::GetPartitionEnergy(G4double T)
114 {
115  G4Pow* g4calc = G4Pow::GetInstance();
116  G4double CoulombFactor = 1.0/g4calc->A13(1.0+G4StatMFParameters::GetKappaCoulomb());
117 
118  G4double PartitionEnergy = 0.0;
119 
120  // We use the aprox that Z_f ~ Z/A * A_f
121  for (unsigned int i = 0; i < _thePartition.size(); i++)
122  {
123  if (_thePartition[i] == 0 || _thePartition[i] == 1)
124  {
125  PartitionEnergy += _theCoulombFreeEnergy[i];
126  }
127  else if (_thePartition[i] == 2)
128  {
129  PartitionEnergy +=
130  -2.796 // Binding Energy of deuteron ??????
131  + _theCoulombFreeEnergy[i];
132  }
133  else if (_thePartition[i] == 3)
134  {
135  PartitionEnergy +=
136  -9.224 // Binding Energy of trtion/He3 ??????
137  + _theCoulombFreeEnergy[i];
138  }
139  else if (_thePartition[i] == 4)
140  {
141  PartitionEnergy +=
142  -30.11 // Binding Energy of ALPHA ??????
143  + _theCoulombFreeEnergy[i]
144  + 4.*T*T/InvLevelDensity(4.);
145  }
146  else
147  {
148  PartitionEnergy +=
149  //Volume term
151  T*T/InvLevelDensity(_thePartition[i]))
152  *_thePartition[i] +
153 
154  // Symmetry term
156  (1.0-2.0*theZ/theA)*(1.0-2.0*theZ/theA)*_thePartition[i] +
157 
158  // Surface term
160  g4calc->Z23(_thePartition[i]) +
161 
162  // Coulomb term
163  _theCoulombFreeEnergy[i];
164  }
165  }
166 
167  PartitionEnergy += elm_coupling*0.6*theZ*theZ*CoulombFactor/
168  (G4StatMFParameters::Getr0()*g4calc->Z13(theA))
169  + 1.5*T*(_thePartition.size()-1);
170 
171  return PartitionEnergy;
172 }
173 
174 G4double G4StatMFMicroPartition::CalcPartitionTemperature(G4double U,
175  G4double FreeInternalE0)
176 {
177  G4double PartitionEnergy = GetPartitionEnergy(0.0);
178 
179  // If this happens, T = 0 MeV, which means that probability for this
180  // partition will be 0
181  if (std::fabs(U + FreeInternalE0 - PartitionEnergy) < 0.003) return -1.0;
182 
183  // Calculate temperature by midpoint method
184 
185  // Bracketing the solution
186  G4double Ta = 0.001;
187  G4double Tb = std::max(std::sqrt(8.0*U/theA),0.0012*MeV);
188  G4double Tmid = 0.0;
189 
190  G4double Da = (U + FreeInternalE0 - GetPartitionEnergy(Ta))/U;
191  G4double Db = (U + FreeInternalE0 - GetPartitionEnergy(Tb))/U;
192 
193  G4int maxit = 0;
194  // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
195  while (Da*Db > 0.0 && maxit < 1000)
196  {
197  ++maxit;
198  Tb += 0.5*Tb;
199  Db = (U + FreeInternalE0 - GetPartitionEnergy(Tb))/U;
200  }
201 
202  G4double eps = 1.0e-14*std::abs(Ta-Tb);
203 
204  for (G4int i = 0; i < 1000; i++)
205  {
206  Tmid = (Ta+Tb)/2.0;
207  if (std::fabs(Ta-Tb) <= eps) return Tmid;
208  G4double Dmid = (U + FreeInternalE0 - GetPartitionEnergy(Tmid))/U;
209  if (std::fabs(Dmid) < 0.003) return Tmid;
210  if (Da*Dmid < 0.0)
211  {
212  Tb = Tmid;
213  Db = Dmid;
214  }
215  else
216  {
217  Ta = Tmid;
218  Da = Dmid;
219  }
220  }
221  // if we arrive here the temperature could not be calculated
222  G4cout << "G4StatMFMicroPartition::CalcPartitionTemperature: I can't calculate the temperature"
223  << G4endl;
224  // and set probability to 0 returning T < 0
225  return -1.0;
226 
227 }
228 
230  G4double FreeInternalE0,
231  G4double SCompound)
232 {
233  G4double T = CalcPartitionTemperature(U,FreeInternalE0);
234  if ( T <= 0.0) return _Probability = 0.0;
235  _Temperature = T;
236 
237  G4Pow* g4calc = G4Pow::GetInstance();
238 
239  // Factorial of fragment multiplicity
240  G4double Fact = 1.0;
241  unsigned int i;
242  for (i = 0; i < _thePartition.size() - 1; i++)
243  {
244  G4double f = 1.0;
245  for (unsigned int ii = i+1; i< _thePartition.size(); i++)
246  {
247  if (_thePartition[i] == _thePartition[ii]) f++;
248  }
249  Fact *= f;
250  }
251 
252  G4double ProbDegeneracy = 1.0;
253  G4double ProbA32 = 1.0;
254 
255  for (i = 0; i < _thePartition.size(); i++)
256  {
257  ProbDegeneracy *= GetDegeneracyFactor(_thePartition[i]);
258  ProbA32 *= _thePartition[i]*std::sqrt((G4double)_thePartition[i]);
259  }
260 
261  // Compute entropy
262  G4double PartitionEntropy = 0.0;
263  for (i = 0; i < _thePartition.size(); i++)
264  {
265  // interaction entropy for alpha
266  if (_thePartition[i] == 4)
267  {
268  PartitionEntropy +=
269  2.0*T*_thePartition[i]/InvLevelDensity(_thePartition[i]);
270  }
271  // interaction entropy for Af > 4
272  else if (_thePartition[i] > 4)
273  {
274  PartitionEntropy +=
275  2.0*T*_thePartition[i]/InvLevelDensity(_thePartition[i])
276  - G4StatMFParameters::DBetaDT(T) * g4calc->Z23(_thePartition[i]);
277  }
278  }
279 
280  // Thermal Wave Lenght = std::sqrt(2 pi hbar^2 / nucleon_mass T)
281  G4double ThermalWaveLenght3 = 16.15*fermi/std::sqrt(T);
282  ThermalWaveLenght3 = ThermalWaveLenght3*ThermalWaveLenght3*ThermalWaveLenght3;
283 
284  // Translational Entropy
285  G4double kappa = 1. + elm_coupling*(g4calc->Z13(_thePartition.size())-1.0)
286  /(G4StatMFParameters::Getr0()*g4calc->Z13(theA));
287  kappa = kappa*kappa*kappa;
288  kappa -= 1.;
291  G4double FreeVolume = kappa*V0;
292  G4double TranslationalS = std::max(0.0, G4Log(ProbA32/Fact) +
293  (_thePartition.size()-1.0)*G4Log(FreeVolume/ThermalWaveLenght3) +
294  1.5*(_thePartition.size()-1.0) - 1.5*g4calc->logZ(theA));
295 
296  PartitionEntropy += G4Log(ProbDegeneracy) + TranslationalS;
297  _Entropy = PartitionEntropy;
298 
299  // And finally compute probability of fragment configuration
300  G4double exponent = PartitionEntropy-SCompound;
301  if (exponent > 300.0) exponent = 300.0;
302  return _Probability = G4Exp(exponent);
303 }
304 
305 G4double G4StatMFMicroPartition::GetDegeneracyFactor(G4int A)
306 {
307  // Degeneracy factors are statistical factors
308  // DegeneracyFactor for nucleon is (2S_n + 1)(2I_n + 1) = 4
309  G4double DegFactor = 0;
310  if (A > 4) DegFactor = 1.0;
311  else if (A == 1) DegFactor = 4.0; // nucleon
312  else if (A == 2) DegFactor = 3.0; // Deuteron
313  else if (A == 3) DegFactor = 4.0; // Triton + He3
314  else if (A == 4) DegFactor = 1.0; // alpha
315  return DegFactor;
316 }
317 
319 // Gives fragments charges
320 {
321  std::vector<G4int> FragmentsZ;
322 
323  G4int ZBalance = 0;
324  do
325  {
327  G4int SumZ = 0;
328  for (unsigned int i = 0; i < _thePartition.size(); i++)
329  {
330  G4double ZMean;
331  G4double Af = _thePartition[i];
332  if (Af > 1.5 && Af < 4.5) ZMean = 0.5*Af;
333  else ZMean = Af*Z0/A0;
334  G4double ZDispersion = std::sqrt(Af * MeanT/CC);
335  G4int Zf;
336  do
337  {
338  Zf = static_cast<G4int>(G4RandGauss::shoot(ZMean,ZDispersion));
339  }
340  // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
341  while (Zf < 0 || Zf > Af);
342  FragmentsZ.push_back(Zf);
343  SumZ += Zf;
344  }
345  ZBalance = Z0 - SumZ;
346  }
347  // Loop checking, 05-Aug-2015, Vladimir Ivanchenko
348  while (std::abs(ZBalance) > 1);
349  FragmentsZ[0] += ZBalance;
350 
351  G4StatMFChannel * theChannel = new G4StatMFChannel;
352  for (unsigned int i = 0; i < _thePartition.size(); i++)
353  {
354  theChannel->CreateFragment(_thePartition[i],FragmentsZ[i]);
355  }
356 
357  return theChannel;
358 }
static G4double GetGamma0()
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4bool operator!=(const G4StatMFMicroPartition &right) const
ThreeVector shoot(const G4int Ap, const G4int Af)
static G4double GetKappaCoulomb()
Definition: G4Pow.hh:56
static const G4double eps
G4bool operator==(const G4StatMFMicroPartition &right) const
int G4int
Definition: G4Types.hh:78
static G4double Getr0()
void CreateFragment(G4int A, G4int Z)
G4StatMFChannel * ChooseZ(G4int A0, G4int Z0, G4double MeanT)
G4double logZ(G4int Z) const
Definition: G4Pow.hh:166
G4GLOB_DLL std::ostream G4cout
G4double Z13(G4int Z) const
Definition: G4Pow.hh:127
double A(double temperature)
G4StatMFMicroPartition(G4int A, G4int Z)
bool G4bool
Definition: G4Types.hh:79
static G4double GetE0()
G4double G4Log(G4double x)
Definition: G4Log.hh:230
G4double G4Exp(G4double initial_x)
Exponential Function double precision.
Definition: G4Exp.hh:183
G4double A13(G4double A) const
Definition: G4Pow.hh:132
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double CalcPartitionProbability(G4double U, G4double FreeInternalE0, G4double SCompound)
static G4double DBetaDT(G4double T)
static G4double GetCoulomb()
G4double Z23(G4int Z) const
Definition: G4Pow.hh:154
static constexpr double elm_coupling
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
static constexpr double pi
Definition: G4SIunits.hh:75
double G4double
Definition: G4Types.hh:76
static constexpr double fermi
Definition: G4SIunits.hh:103
static G4double Beta(G4double T)