69                                      G4int noIntegrationVariables,
 
   74     const G4int numberOfVariables = noIntegrationVariables;
 
   79     ak2 = 
new G4double[numberOfVariables];
 
   80     ak3 = 
new G4double[numberOfVariables];
 
   81     ak4 = 
new G4double[numberOfVariables];
 
   82     ak5 = 
new G4double[numberOfVariables];
 
   83     ak6 = 
new G4double[numberOfVariables];
 
   84     ak7 = 
new G4double[numberOfVariables];
 
   85     ak8 = 
new G4double[numberOfVariables];
 
   87     ak9 = 
new G4double[numberOfVariables];
 
   88     ak10 = 
new G4double[numberOfVariables];
 
   89     ak11 = 
new G4double[numberOfVariables];
 
   99     fLastInitialVector = 
new G4double[numStateVars] ;
 
  100     fLastFinalVector = 
new G4double[numStateVars] ;
 
  101     fLastDyDx = 
new G4double[numberOfVariables];  
 
  103     fMidVector = 
new G4double[numStateVars];
 
  104     fMidError =  
new G4double[numStateVars];
 
  106     pseudoDydx_for_DistChord = 
new G4double[numberOfVariables];
 
  108     fMidVector = 
new G4double[numberOfVariables];
 
  109     fMidError =  
new G4double[numberOfVariables];
 
  136     delete[] fLastInitialVector;
 
  137     delete[] fLastFinalVector;
 
  144     delete[] pseudoDydx_for_DistChord;
 
  166     b31 = 2.0/27.0 , b32 = 4.0/27.0,
 
  168     b41 = 183.0/1372.0 , b42 = -162.0/343.0, b43 = 1053.0/1372.0,
 
  170     b51 = 68.0/297.0, b52 = -4.0/11.0,
 
  171     b53 = 42.0/143.0, b54 = 1960.0/3861.0,
 
  173     b61 = 597.0/22528.0, b62 = 81.0/352.0,
 
  174     b63 = 63099.0/585728.0, b64 = 58653.0/366080.0,
 
  175     b65 = 4617.0/20480.0,
 
  177     b71 = 174197.0/959244.0, b72 = -30942.0/79937.0,
 
  178     b73 = 8152137.0/19744439.0, b74 = 666106.0/1039181.0,
 
  179     b75 = -29421.0/29068.0,  b76 = 482048.0/414219.0,
 
  181     b81 = 587.0/8064.0,  b82 = 0.0,
 
  182     b83 = 4440339.0/15491840.0,  b84 = 24353.0/124800.0,
 
  183     b85 = 387.0/44800.0, b86 = 2152.0/5985.0,
 
  184     b87 = 7267.0/94080.0,
 
  202     dc1 = b81 - 2479.0/34992.0 ,
 
  204     dc3 = b83 - 123.0/416.0 ,
 
  205     dc4 = b84 - 612941.0/3411720.0,
 
  206     dc5 = b85 - 43.0/1440.0,
 
  207     dc6 = b86 - 2272.0/6561.0,
 
  208     dc7 = b87 - 79937.0/1113912.0,
 
  209     dc8 = -3293.0/556956.0;   
 
  217     yOut[7] = yTemp[7]  = yIn[7];
 
  220     for(i=0;i<numberOfVariables;i++)
 
  230     for(i=0;i<numberOfVariables;i++)
 
  232         yTemp[i] = yIn[i] + b21*Step*DyDx[i] ;
 
  236     for(i=0;i<numberOfVariables;i++)
 
  238         yTemp[i] = yIn[i] + Step*(b31*DyDx[i] + b32*ak2[i]) ;
 
  242     for(i=0;i<numberOfVariables;i++)
 
  244         yTemp[i] = yIn[i] + Step*(b41*DyDx[i] + b42*ak2[i] + b43*ak3[i]) ;
 
  248     for(i=0;i<numberOfVariables;i++)
 
  250         yTemp[i] = yIn[i] + Step*(b51*DyDx[i] + b52*ak2[i] + b53*ak3[i] +
 
  255     for(i=0;i<numberOfVariables;i++)
 
  257         yTemp[i] = yIn[i] + Step*(b61*DyDx[i] + b62*ak2[i] + b63*ak3[i] +
 
  258                                   b64*ak4[i] + b65*ak5[i]) ;
 
  262     for(i=0;i<numberOfVariables;i++)
 
  264         yTemp[i] = yIn[i] + Step*(b71*DyDx[i] + b72*ak2[i] + b73*ak3[i] +
 
  265                                   b74*ak4[i] + b75*ak5[i] + b76*ak6[i]);
 
  269     for(i=0;i<numberOfVariables;i++)
 
  271         yOut[i] = yIn[i] + Step*(b81*DyDx[i] + b82*ak2[i] + b83*ak3[i] +
 
  272                                   b84*ak4[i] + b85*ak5[i] + b86*ak6[i] +
 
  278     for(i=0;i<numberOfVariables;i++)
 
  281         yErr[i] = Step*(dc1*DyDx[i] + dc2*ak2[i] + dc3*ak3[i] + dc4*ak4[i] +
 
  282                         dc5*ak5[i] + dc6*ak6[i] + dc7*ak7[i] + dc8*ak8[i]) ;
 
  286         nextDydx[i] = ak8[i];
 
  289         fLastInitialVector[i] = yIn[i] ;
 
  290         fLastFinalVector[i]   = yOut[i];
 
  291         fLastDyDx[i]          = DyDx[i];
 
  295     fLastStepLength = Step;
 
  315                                  fLastInitialVector[1], fLastInitialVector[2]);
 
  317                                  fLastFinalVector[1],  fLastFinalVector[2]);
 
  321     fAuxStepper->
Stepper( fLastInitialVector, fLastDyDx, 0.5 * fLastStepLength,
 
  322                          fMidVector,   fMidError, pseudoDydx_for_DistChord );
 
  324     midPoint = 
G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]);
 
  330     if (initialPoint != finalPoint)
 
  333         distChord = distLine;
 
  337         distChord = (midPoint-initialPoint).mag();
 
  358     a93 = 10256301.0/35409920.0 ,
 
  359     a94 = 2307361.0/17971200.0 ,
 
  360     a95 = -387.0/102400.0 ,
 
  362     a97 = -7267.0/215040.0 ,
 
  366     a101 = -837888343715.0/13176988637184.0 ,
 
  367     a102 = 30409415.0/52955362.0 ,
 
  368     a103 = -48321525963.0/759168069632.0 ,
 
  369     a104 = 8530738453321.0/197654829557760.0 ,
 
  370     a105 = 1361640523001.0/1626788720640.0 ,
 
  371     a106 = -13143060689.0/38604458898.0 ,
 
  372     a107 = 18700221969.0/379584034816.0 ,
 
  373     a108 = -5831595.0/847285792.0 ,
 
  374     a109 = -5183640.0/26477681.0 ,
 
  376     a111 = 98719073263.0/1551965184000.0 ,
 
  377     a112 = 1307.0/123552.0 ,
 
  378     a113 = 4632066559387.0/70181753241600.0 ,
 
  379     a114 = 7828594302389.0/382182512025600.0 ,
 
  380     a115 = 40763687.0/11070259200.0 ,
 
  381     a116 = 34872732407.0/224610586200.0 ,
 
  382     a117 = -2561897.0/30105600.0 ,
 
  385     a1110 = -1403317093.0/11371610250.0 ;
 
  423     for(
int i=1; i<= 11; i++)
 
  426     for(
int i=1; i<=6; i++)
 
  429     bi[1][6] = -12134338393.0/1050809760.0 ,
 
  430     bi[1][5] = -1620741229.0/50038560.0 ,
 
  431     bi[1][4] = -2048058893.0/59875200.0 ,
 
  432     bi[1][3] = -87098480009.0/5254048800.0 ,
 
  433     bi[1][2] = -11513270273.0/3502699200.0 ,
 
  435     bi[3][6] = -33197340367.0/1218433216.0 ,
 
  436     bi[3][5] = -539868024987.0/6092166080.0 ,
 
  437     bi[3][4] = -39991188681.0/374902528.0 ,
 
  438     bi[3][3] = -69509738227.0/1218433216.0 ,
 
  439     bi[3][2] = -29327744613.0/2436866432.0 ,
 
  441     bi[4][6] = -284800997201.0/19905339168.0 ,
 
  442     bi[4][5] = -7896875450471.0/165877826400.0 ,
 
  443     bi[4][4] = -333945812879.0/5671036800.0 ,
 
  444     bi[4][3] = -16209923456237.0/497633479200.0 ,
 
  445     bi[4][2] = -2382590741699.0/331755652800.0 ,
 
  447     bi[5][6] = -540919.0/741312.0 ,
 
  448     bi[5][5] = -103626067.0/43243200.0 ,
 
  449     bi[5][4] = -633779.0/211200.0 ,
 
  450     bi[5][3] = -32406787.0/18532800.0 ,
 
  451     bi[5][2] = -36591193.0/86486400.0 ,
 
  453     bi[6][6] = 7157998304.0/374350977.0 ,
 
  454     bi[6][5] = 30405842464.0/623918295.0 ,
 
  455     bi[6][4] = 183022264.0/5332635.0 ,
 
  456     bi[6][3] = -3357024032.0/1871754885.0 ,
 
  457     bi[6][2] = -611586736.0/89131185.0 ,
 
  459     bi[7][6] = -138073.0/9408.0 ,
 
  460     bi[7][5] = -719433.0/15680.0 ,
 
  461     bi[7][4] = -1620541.0/31360.0 ,
 
  462     bi[7][3] = -385151.0/15680.0 ,
 
  463     bi[7][2] = -65403.0/15680.0 ,
 
  465     bi[8][6] = 1245.0/64.0 ,
 
  466     bi[8][5] = 3991.0/64.0 ,
 
  467     bi[8][4] = 4715.0/64.0 ,
 
  468     bi[8][3] = 2501.0/64.0 ,
 
  469     bi[8][2] = 149.0/16.0 ,
 
  472     bi[9][6] = 55.0/3.0 ,
 
  475     bi[9][3] = 199.0/3.0 ,
 
  478     bi[10][6] = -1774004627.0/75810735.0 ,
 
  479     bi[10][5] = -1774004627.0/25270245.0 ,
 
  480     bi[10][4] = -26477681.0/359975.0 ,
 
  481     bi[10][3] = -11411880511.0/379053675.0 ,
 
  482     bi[10][2] = -423642896.0/126351225.0 ,
 
  564     for(
int i=0;i<numberOfVariables;i++)
 
  570     yOut[7] = yTemp[7]  = yIn[7];
 
  576     for(
int i=0; i<numberOfVariables; i++){
 
  577         yTemp[i] = yIn[i] + Step*(a91*dydx[i] + a92*ak2[i] + a93*ak3[i] +
 
  578                                   a94*ak4[i] + a95*ak5[i] + a96*ak6[i] +
 
  579                                   a97*ak7[i] + a98*ak8[i] );
 
  584     for(
int i=0; i<numberOfVariables; i++){
 
  585         yTemp[i] = yIn[i] + Step*(a101*dydx[i] + a102*ak2[i] + a103*ak3[i] +
 
  586                                   a104*ak4[i] + a105*ak5[i] + a106*ak6[i] +
 
  587                                   a107*ak7[i] + a108*ak8[i] + a109*ak9[i] );
 
  592     for(
int i=0; i<numberOfVariables; i++){
 
  593         yTemp[i] = yIn[i] + Step*(a111*dydx[i] + a112*ak2[i] + a113*ak3[i] +
 
  594                                   a114*ak4[i] + a115*ak5[i] + a116*ak6[i] +
 
  595                                   a117*ak7[i] + a118*ak8[i] + a119*ak9[i] +
 
  604     for(
int i=1; i<=11; i++){   
 
  607         for(
int j=1; j<=6; j++){
 
  608             b[i] += bi[i][j]*tau;
 
  613     for(
int i=0; i<numberOfVariables; i++){
 
  614         yOut[i] = yIn[i] + Step*(b[1]*dydx[i] + b[2]*ak2[i] + b[3]*ak3[i] +
 
  615                                  b[4]*ak4[i] + b[5]*ak5[i] + b[6]*ak6[i] +
 
  616                                  b[7]*ak7[i] + b[8]*ak8[i] + b[9]*ak9[i] +
 
  617                                  b[10]*ak10[i] + b[11]*ak11[i] );
 
CLHEP::Hep3Vector G4ThreeVector
 
static G4double Distline(const G4ThreeVector &OtherPnt, const G4ThreeVector &LinePntA, const G4ThreeVector &LinePntB)
 
G4int GetNumberOfStateVariables() const 
 
G4FSALBogackiShampine45(G4EquationOfMotion *EqRhs, G4int numberOfVariables=6, G4bool primary=true)
 
void RightHandSide(const double y[], double dydx[])
 
void interpolate(const G4double yInput[], const G4double dydx[], G4double yOut[], G4double Step, G4double tau)
 
void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[], G4double nextDydx[])
 
G4double DistChord() const 
 
~G4FSALBogackiShampine45()
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
G4int GetNumberOfVariables() const