69   fGammaCutInKineticEnergy(0),
 
   75   fAngleForEnergyTable(0)
 
  112     G4cout<<
"### G4VXTRenergyLoss: the number of TR radiator plates = " 
  116     G4Exception(
"G4VXTRenergyLoss::G4VXTRenergyLoss()",
"VXTRELoss01",
 
  197   G4double charge, chargeSq, massRatio, TkinScaled;
 
  208     gamma     = 1.0 + kinEnergy/mass;
 
  214     if ( std::fabs( gamma - 
fGamma ) < 0.05*gamma ) lambda = 
fLambda;
 
  218       chargeSq  = charge*charge;
 
  220       TkinScaled = kinEnergy*massRatio;
 
  222       for(iTkin = 0; iTkin < 
fTotBin; iTkin++)
 
  224         if( TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin))  
break;    
 
  228       if(iTkin == 0) lambda = 
DBL_MAX; 
 
  233           sigma = (*(*fEnergyDistrTable)(iPlace))(0)*chargeSq;
 
  240           W1 = (E2 - TkinScaled)*W;
 
  241           W2 = (TkinScaled - E1)*W;
 
  242           sigma = ( (*(*fEnergyDistrTable)(iPlace  ))(0)*W1 +
 
  247         else                 lambda = 1./sigma; 
 
  269                  "XTR initialisation for neutral particle ?!" );   
 
  277       G4cout<<
"Build angle for energy distribution according the current radiator" 
  291   G4int iTkin, iTR, iPlace;
 
  317     G4cout<<
"Lorentz Factor"<<
"\t"<<
"XTR photon number"<<
G4endl;
 
  320   for( iTkin = 0; iTkin < 
fTotBin; iTkin++ )      
 
  340     for( iTR = 
fBinTR - 2; iTR >= 0; iTR-- )
 
  370     G4cout<<
"total time for build X-ray TR energy loss tables = " 
  415   for( iTkin = 0; iTkin < 
fTotBin; iTkin++ )      
 
  430     for( iTR = 0; iTR < 
fBinTR; iTR++ )
 
  438       angleVector ->
PutValue(fBinTR - 1, angleSum);
 
  440       for( i = fBinTR - 2; i >= 0; i-- )
 
  449           angleVector ->
PutValue(i, angleSum);
 
  460     G4cout<<
"total time for build X-ray TR angle for energy loss tables = " 
  493     G4cout<<
"Lorentz Factor"<<
"\t"<<
"XTR photon number"<<
G4endl;
 
  496   for( iTkin = 0; iTkin < 
fTotBin; iTkin++ )      
 
  514     for( iTR = 0; iTR < 
fBinTR; iTR++ )
 
  533     G4cout<<
"total time for build XTR angle for given energy tables = " 
  548   G4int iTheta, k,  kMin;
 
  561   kMin = 
G4int(cofMin);
 
  562   if (cofMin > kMin) kMin++;
 
  568     G4cout<<
"n-1 = "<<n-1<<
"; theta = " 
  571           <<
";    angleSum = "<<angleSum<<
G4endl; 
 
  575   for( iTheta = n - 1; iTheta >= 1; iTheta-- )
 
  578     k = iTheta- 1 + kMin;
 
  582     result = (k - cof1)*(k - cof1)*(k + cof2)*(k + cof2);
 
  584     tmp = std::sin(tmp)*std::sin(tmp)*std::abs(k-cofMin)/
result;
 
  586     if( k == kMin && kMin == 
G4int(cofMin) )
 
  590     else if(iTheta == n-1);
 
  595     theta = std::abs(k-cofMin)*cofPHC/energy/(fPlateThick + 
fGasThick);
 
  599       G4cout<<
"iTheta = "<<iTheta<<
"; k = "<<k<<
"; theta = " 
  600             <<std::sqrt(theta)*
fGamma<<
"; tmp = " 
  602             <<
";    angleSum = "<<angleSum<<
G4endl;
 
  604     angleVector->
PutValue( iTheta, theta, angleSum );       
 
  613     G4cout<<
"iTheta = "<<iTheta<<
"; theta = " 
  614           <<std::sqrt(theta)*
fGamma<<
"; tmp = " 
  616           <<
";    angleSum = "<<angleSum<<
G4endl;
 
  618   angleVector->
PutValue( iTheta, theta, angleSum );
 
  629   G4int iTkin, iTR, iPlace;
 
  649     G4cout<<
"Lorentz Factor"<<
"\t"<<
"XTR photon number"<<
G4endl;
 
  652   for( iTkin = 0; iTkin < 
fTotBin; iTkin++ )      
 
  678     for( iTR = 
fBinTR - 2; iTR >= 0; iTR-- )
 
  686       angleVector ->
PutValue(iTR,angleSum);
 
  704     G4cout<<
"total time for build X-ray TR angle tables = " 
  722   G4double energyTR, theta,theta2, phi, dirX, dirY, dirZ;
 
  729     G4cout<<
"Start of G4VXTRenergyLoss::PostStepDoIt "<<
G4endl;
 
  730     G4cout<<
"name of current material =  " 
  737       G4cout<<
"Go out from G4VXTRenergyLoss::PostStepDoIt: wrong volume "<<
G4endl;
 
  750     G4double gamma     = 1.0 + kinEnergy/mass;
 
  757     G4double          TkinScaled = kinEnergy*massRatio;
 
  762     for( iTkin = 0; iTkin < 
fTotBin; iTkin++ )
 
  764       if(TkinScaled < fProtonEnergyVector->GetLowEdgeEnergy(iTkin))  
break;    
 
  772         G4cout<<
"Go out from G4VXTRenergyLoss::PostStepDoIt:iTkin = "<<iTkin<<
G4endl;
 
  790         if(theta2 > 0.) theta = std::sqrt(theta2);
 
  797       if( theta >= 0.1 ) theta = 0.1;
 
  803       dirX = std::sin(theta)*std::cos(phi);
 
  804       dirY = std::sin(theta)*std::sin(phi);
 
  805       dirZ = std::cos(theta);
 
  812                                                            directionTR, energyTR);
 
  832         position         += distance*directionTR;
 
  836                                         startTime, position );
 
  880   if(result < 0.0) result = 0.0;
 
  893   G4double lim[8] = { 0.0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0 };
 
  919     for( i = 0; i < iMax-1; i++ )
 
  938   if(result < 0) result = 0.0;
 
  951   G4double sum = 0., tmp1, tmp2, 
tmp=0., cof1, cof2, cofMin, cofPHC, energy1, energy2;
 
  952   G4int k, kMax, kMin, i;
 
  961   cofMin  =  std::sqrt(cof1*cof2); 
 
  964   kMin = 
G4int(cofMin);
 
  965   if (cofMin > kMin) kMin++;
 
  971   for( k = kMin; k <= kMax; k++ )
 
  974     tmp2 = std::sqrt(tmp1*tmp1-cof1*cof2);
 
  975     energy1 = (tmp1+tmp2)/cof1;
 
  976     energy2 = (tmp1-tmp2)/cof1;
 
  978     for(i = 0; i < 2; i++)
 
  985         tmp2 = std::sin(tmp1);
 
  986         tmp  = energy1*tmp2*tmp2;
 
  988         tmp1 = hbarc*energy1/( energy1*energy1*(1./
fGamma/
fGamma + varAngle) + fSigma2 );
 
  989     tmp *= (tmp1-tmp2)*(tmp1-tmp2);
 
  990     tmp1 = cof1/(4*
hbarc) - cof2/(4*hbarc*energy1*energy1);
 
  991     tmp2 = std::abs(tmp1);
 
  992     if(tmp2 > 0.) tmp /= tmp2;
 
 1000         tmp2 = std::sin(tmp1);
 
 1001         tmp  = energy2*tmp2*tmp2;
 
 1003         tmp1 = hbarc*energy2/( energy2*energy2*(1./
fGamma/
fGamma + varAngle) + fSigma2 );
 
 1004     tmp *= (tmp1-tmp2)*(tmp1-tmp2);
 
 1005     tmp1 = cof1/(4*
hbarc) - cof2/(4*hbarc*energy2*energy2);
 
 1006     tmp2 = std::abs(tmp1);
 
 1007     if(tmp2 > 0.) tmp /= tmp2;
 
 1016   result /= hbarc*
hbarc;
 
 1038   lambda = 1.0/gamma/gamma + varAngle + 
fSigma1/omega/omega;
 
 1051   G4double cof, length,delta, real_v, image_v;
 
 1055   cof    = 1.0/(1.0 + delta*delta);
 
 1057   real_v  = length*cof;
 
 1058   image_v = real_v*delta;
 
 1090   omega2 = omega*omega;
 
 1091   omega3 = omega2*omega;
 
 1092   omega4 = omega2*omega2;
 
 1095   G4double cross = SandiaCof[0]/omega  + SandiaCof[1]/omega2 +
 
 1096                    SandiaCof[2]/omega3 + SandiaCof[3]/omega4;
 
 1110   lambda = 1.0/gamma/gamma + varAngle + 
fSigma2/omega/omega;
 
 1124   G4double cof, length,delta, real_v, image_v;
 
 1128   cof    = 1.0/(1.0 + delta*delta);
 
 1130   real_v   = length*cof;
 
 1131   image_v  = real_v*delta;
 
 1161   omega2 = omega*omega;
 
 1162   omega3 = omega2*omega;
 
 1163   omega4 = omega2*omega2;
 
 1166   G4double cross = SandiaCof[0]/omega  + SandiaCof[1]/omega2 +
 
 1167                    SandiaCof[2]/omega3 + SandiaCof[3]/omega4;
 
 1191   std::ofstream outPlate(
"plateZmu.dat", std::ios::out );
 
 1192   outPlate.setf( std::ios::scientific, std::ios::floatfield );
 
 1197   varAngle = 1/gamma/gamma;
 
 1202     omega = (1.0 + i)*
keV;
 
 1229   std::ofstream outGas(
"gasZmu.dat", std::ios::out );
 
 1230   outGas.setf( std::ios::scientific, std::ios::floatfield );
 
 1234   varAngle = 1/gamma/gamma;
 
 1239     omega = (1.0 + i)*
keV;
 
 1254   G4int i, numberOfElements;
 
 1255   G4double xSection = 0., nowZ, sumZ = 0.;
 
 1258   numberOfElements = (*theMaterialTable)[
fMatIndex1]->GetNumberOfElements();
 
 1260   for( i = 0; i < numberOfElements; i++ )
 
 1262     nowZ      = (*theMaterialTable)[
fMatIndex1]->GetElement(i)->GetZ();
 
 1267   xSection *= (*theMaterialTable)[
fMatIndex1]->GetElectronDensity();
 
 1278   G4int i, numberOfElements;
 
 1279   G4double xSection = 0., nowZ, sumZ = 0.;
 
 1282   numberOfElements = (*theMaterialTable)[
fMatIndex2]->GetNumberOfElements();
 
 1284   for( i = 0; i < numberOfElements; i++ )
 
 1286     nowZ      = (*theMaterialTable)[
fMatIndex2]->GetElement(i)->GetZ();
 
 1291   xSection *= (*theMaterialTable)[
fMatIndex2]->GetElectronDensity();
 
 1303   if ( Z < 0.9999 )                 
return CrossSection;
 
 1304   if ( GammaEnergy < 0.1*
keV      ) 
return CrossSection;
 
 1305   if ( GammaEnergy > (100.*
GeV/Z) ) 
return CrossSection;
 
 1307   static const G4double a = 20.0 , 
b = 230.0 , 
c = 440.0;
 
 1310   d1= 2.7965e-1*
barn, d2=-1.8300e-1*
barn, d3= 6.7527   *
barn, d4=-1.9798e+1*
barn,
 
 1311   e1= 1.9756e-5*
barn, e2=-1.0205e-2*
barn, e3=-7.3913e-2*
barn, e4= 2.7079e-2*
barn,
 
 1314   G4double p1Z = Z*(d1 + e1*Z + f1*Z*
Z), p2Z = Z*(d2 + e2*Z + f2*Z*Z),
 
 1315            p3Z = Z*(d3 + e3*Z + f3*Z*
Z), p4Z = Z*(d4 + e4*Z + f4*Z*Z);
 
 1318   if (Z < 1.5) T0 = 40.0*
keV;
 
 1321   CrossSection = p1Z*std::log(1.+2.*X)/X
 
 1322                + (p2Z + p3Z*X + p4Z*X*
X)/(1. + a*X + 
b*X*X + 
c*X*X*X);
 
 1326   if (GammaEnergy < T0) 
 
 1330     G4double sigma = p1Z*std::log(1.+2*X)/X
 
 1331                     + (p2Z + p3Z*X + p4Z*X*
X)/(1. + a*X + 
b*X*X + 
c*X*X*X);
 
 1332     G4double   c1 = -T0*(sigma-CrossSection)/(CrossSection*dT0);
 
 1334     if (Z > 1.5) c2 = 0.375-0.0556*std::log(Z);
 
 1336     CrossSection *= std::exp(-y*(c1+c2*y));
 
 1339   return CrossSection;  
 
 1357   G4double  formationLength1, formationLength2;
 
 1358   formationLength1 = 1.0/
 
 1362   formationLength2 = 1.0/
 
 1366   return (varAngle/energy)*(formationLength1 - formationLength2)
 
 1367               *(formationLength1 - formationLength2);
 
 1437   std::ofstream outEn(
"numberE.dat", std::ios::out );
 
 1438   outEn.setf( std::ios::scientific, std::ios::floatfield );
 
 1440   std::ofstream outAng(
"numberAng.dat", std::ios::out );
 
 1441   outAng.setf( std::ios::scientific, std::ios::floatfield );
 
 1443   for(iTkin=0;iTkin<
fTotBin;iTkin++)      
 
 1447      numberE = (*(*fEnergyDistrTable)(iTkin))(0);
 
 1450        G4cout<<gamma<<
"\t\t"<<numberE<<
"\t"     
 1453        outEn<<gamma<<
"\t\t"<<numberE<<
G4endl; 
 
 1465   G4int iTransfer, iPlace;
 
 1476       for(iTransfer=0;;iTransfer++)
 
 1487     W1 = (E2 - scaledTkin)*W;
 
 1488     W2 = (scaledTkin - E1)*W;
 
 1490     position =( (*(*fEnergyDistrTable)(iPlace))(0)*W1 + 
 
 1495     for(iTransfer=0;;iTransfer++)
 
 1505   if(transfer < 0.0 ) transfer = 0.0;
 
 1522     result = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
 
 1526     y1 = (*(*fEnergyDistrTable)(iPlace))(iTransfer-1);
 
 1527     y2 = (*(*fEnergyDistrTable)(iPlace))(iTransfer);
 
 1529     x1 = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1);
 
 1530     x2 = (*fEnergyDistrTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
 
 1532     if ( x1 == x2 )    result = 
x2;
 
 1555   if (iTkin == 
fTotBin) iTkin--;
 
 1559   for( iTR = 0; iTR < 
fBinTR; iTR++ )
 
 1561     if( energyXTR < fXTREnergyVector->GetLowEdgeEnergy(iTR) )  
break;    
 
 1563   if (iTR == fBinTR) iTR--;
 
 1565   position = (*(*fAngleForEnergyTable)(iTR))(0)*
G4UniformRand();
 
 1567   for(iAngle = 0;;iAngle++)
 
 1588     result = (*fAngleForEnergyTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
 
 1592     y1 = (*(*fAngleForEnergyTable)(iPlace))(iTransfer-1);
 
 1593     y2 = (*(*fAngleForEnergyTable)(iPlace))(iTransfer);
 
 1595     x1 = (*fAngleForEnergyTable)(iPlace)->GetLowEdgeEnergy(iTransfer-1);
 
 1596     x2 = (*fAngleForEnergyTable)(iPlace)->GetLowEdgeEnergy(iTransfer);
 
 1598     if ( x1 == x2 )    result = 
x2;
 
 1604         result = x1 + (position - 
y1)*(x2 - x1)/(y2 - 
y1);
 
G4double condition(const G4ErrorSymMatrix &m)
 
G4double Legendre10(T &typeT, F f, G4double a, G4double b)
 
G4double GetXTRrandomEnergy(G4double scaledTkin, G4int iTkin)
 
G4PhysicsTable * fEnergyDistrTable
 
ThreeVector shoot(const G4int Ap, const G4int Af)
 
void ComputeGasPhotoAbsCof()
 
G4double GetGasFormationZone(G4double, G4double, G4double)
 
G4double Legendre96(T &typeT, F f, G4double a, G4double b)
 
void PutValue(size_t binNumber, G4double binValue, G4double dataValue)
 
G4double GetKineticEnergy() const 
 
G4double GetPlateLinearPhotoAbs(G4double)
 
G4double XTRNSpectralDensity(G4double energy)
 
const G4DynamicParticle * GetDynamicParticle() const 
 
G4LogicalVolume * fEnvelope
 
G4double GetPlateCompton(G4double)
 
G4Material * GetMaterial() const 
 
const G4String & GetName() const 
 
G4double GetGasLinearPhotoAbs(G4double)
 
static G4MaterialTable * GetMaterialTable()
 
std::vector< G4Material * > G4MaterialTable
 
G4double G4NeutronHPJENDLHEData::G4double result
 
void SetTouchableHandle(const G4TouchableHandle &apValue)
 
G4ParticleDefinition * GetDefinition() const 
 
const G4VTouchable * GetTouchable() const 
 
G4double GetLowEdgeEnergy(size_t binNumber) const 
 
G4double GetPlateFormationZone(G4double, G4double, G4double)
 
G4double GetComptonPerAtom(G4double, G4double)
 
G4complex GetPlateComplexFZ(G4double, G4double, G4double)
 
G4SandiaTable * GetSandiaTable() const 
 
G4VParticleChange * PostStepDoIt(const G4Track &aTrack, const G4Step &aStep)
 
std::complex< G4double > G4complex
 
void GetNumberOfPhotons()
 
G4GLOB_DLL std::ostream G4cout
 
G4PhysicsLogVector * fProtonEnergyVector
 
const G4ThreeVector & GetPosition() const 
 
G4double GetElectronDensity() const 
 
G4double GetSandiaCofForMaterial(G4int, G4int)
 
G4double GetXTRenergy(G4int iPlace, G4double position, G4int iTransfer)
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4double GetUserElapsed() const 
 
void BuildGlobalAngleTable()
 
Hep3Vector & rotateUz(const Hep3Vector &)
 
void BuildAngleForEnergyBank()
 
void PutValue(size_t index, G4double theValue)
 
void BuildPhysicsTable(const G4ParticleDefinition &)
 
G4double OneBoundaryXTRNdensity(G4double energy, G4double gamma, G4double varAngle) const 
 
G4double XTRNSpectralAngleDensity(G4double varAngle)
 
const G4String & GetProcessName() const 
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
G4PhysicsFreeVector * GetAngleVector(G4double energy, G4int n)
 
virtual void Initialize(const G4Track &)
 
G4SandiaTable * fGasPhotoAbsCof
 
virtual const G4ThreeVector & GetTranslation(G4int depth=0) const =0
 
G4LogicalVolume * GetLogicalVolume() const 
 
G4double GetPDGMass() const 
 
G4double GetAngleXTR(G4int iTR, G4double position, G4int iAngle)
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
void SetNumberOfSecondaries(G4int totSecondaries)
 
void SetParentID(const G4int aValue)
 
G4StepPoint * GetPostStepPoint() const 
 
virtual ~G4VXTRenergyLoss()
 
G4double SpectralAngleXTRdEdx(G4double varAngle)
 
virtual G4double SpectralXTRdEdx(G4double energy)
 
G4bool IsApplicable(const G4ParticleDefinition &)
 
G4VParticleChange * pParticleChange
 
G4PhysicsLogVector * fXTREnergyVector
 
void ProposeEnergy(G4double finalEnergy)
 
G4VXTRenergyLoss(G4LogicalVolume *anEnvelope, G4Material *, G4Material *, G4double, G4double, G4int, const G4String &processName="XTRenergyLoss", G4ProcessType type=fElectromagnetic)
 
G4VPhysicalVolume * GetVolume() const 
 
std::vector< G4PhysicsTable * > fAngleBank
 
void AddSecondary(G4Track *aSecondary)
 
void insertAt(size_t, G4PhysicsVector *)
 
G4double GetRandomAngle(G4double energyXTR, G4int iTkin)
 
G4complex OneInterfaceXTRdEdx(G4double energy, G4double gamma, G4double varAngle)
 
G4PhysicsTable * fAngleForEnergyTable
 
G4double GetGlobalTime() const 
 
G4double GetGasCompton(G4double)
 
G4PhysicsTable * fAngleDistrTable
 
G4SandiaTable * fPlatePhotoAbsCof
 
G4double XTRNAngleDensity(G4double varAngle)
 
G4complex GetGasComplexFZ(G4double, G4double, G4double)
 
G4ParticleDefinition * fPtrGamma
 
G4ParticleChange fParticleChange
 
virtual G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=false, G4bool *validNorm=0, G4ThreeVector *n=0) const =0
 
G4double GetMeanFreePath(const G4Track &aTrack, G4double previousStepSize, G4ForceCondition *condition)
 
G4double GetPDGCharge() const 
 
G4double XTRNAngleSpectralDensity(G4double energy)
 
void ComputePlatePhotoAbsCof()
 
virtual G4VParticleChange * PostStepDoIt(const G4Track &, const G4Step &)
 
const G4TouchableHandle & GetTouchableHandle() const 
 
G4VSolid * GetSolid() const 
 
G4double AngleSpectralXTRdEdx(G4double energy)
 
virtual const G4RotationMatrix * GetRotation(G4int depth=0) const =0
 
void GetPlateZmuProduct()
 
virtual G4double GetStackFactor(G4double energy, G4double gamma, G4double varAngle)
 
G4double AngleXTRdEdx(G4double varAngle)