Geant4_10
G4UniversalFluctuation.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4UniversalFluctuation.cc 74581 2013-10-15 12:03:25Z gcosmo $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4UniversalFluctuation
34 //
35 // Author: Laszlo Urban
36 //
37 // Creation date: 03.01.2002
38 //
39 // Modifications:
40 //
41 // 28-12-02 add method Dispersion (V.Ivanchenko)
42 // 07-02-03 change signature (V.Ivanchenko)
43 // 13-02-03 Add name (V.Ivanchenko)
44 // 16-10-03 Changed interface to Initialisation (V.Ivanchenko)
45 // 07-11-03 Fix problem of rounding of double in G4UniversalFluctuations
46 // 06-02-04 Add control on big sigma > 2*meanLoss (V.Ivanchenko)
47 // 26-04-04 Comment out the case of very small step (V.Ivanchenko)
48 // 07-02-05 define problim = 5.e-3 (mma)
49 // 03-05-05 conditions of Gaussian fluctuation changed (bugfix)
50 // + smearing for very small loss (L.Urban)
51 // 03-10-05 energy dependent rate -> cut dependence of the
52 // distribution is much weaker (L.Urban)
53 // 17-10-05 correction for very small loss (L.Urban)
54 // 20-03-07 'GLANDZ' part rewritten completely, no 'very small loss'
55 // regime any more (L.Urban)
56 // 03-04-07 correction to get better width of eloss distr.(L.Urban)
57 // 13-07-07 add protection for very small step or low-density material (VI)
58 // 19-03-09 new width correction (does not depend on previous steps) (L.Urban)
59 // 20-03-09 modification in the width correction (L.Urban)
60 // 14-06-10 fixed tail distribution - do not use uniform function (L.Urban)
61 // 08-08-10 width correction algorithm has bee modified -->
62 // better results for thin targets (L.Urban)
63 // 06-02-11 correction for very small losses (L.Urban)
64 //
65 
66 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
68 
70 #include "G4PhysicalConstants.hh"
71 #include "G4SystemOfUnits.hh"
72 #include "Randomize.hh"
73 #include "G4Poisson.hh"
74 #include "G4Step.hh"
75 #include "G4Material.hh"
76 #include "G4MaterialCutsCouple.hh"
77 #include "G4DynamicParticle.hh"
78 #include "G4ParticleDefinition.hh"
79 #include "G4Pow.hh"
80 #include "G4Log.hh"
81 
82 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
83 
84 using namespace std;
85 
88  particle(0),
89  minNumberInteractionsBohr(10.0),
90  theBohrBeta2(50.0*keV/proton_mass_c2),
91  minLoss(10.*eV),
92  nmaxCont(16.),
93  rate(0.55),
94  fw(4.)
95 {
96  lastMaterial = 0;
97 
98  particleMass = chargeSquare = ipotFluct = electronDensity = f1Fluct = f2Fluct
99  = e1Fluct = e2Fluct = e1LogFluct = e2LogFluct = ipotLogFluct = e0 = esmall
100  = e1 = e2 = 0;
101 
102  g4pow = G4Pow::GetInstance();
103 }
104 
105 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
106 
108 {}
109 
110 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
111 
113 {
114  particle = part;
115  particleMass = part->GetPDGMass();
116  G4double q = part->GetPDGCharge()/eplus;
117  chargeSquare = q*q;
118 }
119 
120 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
121 
122 G4double
124  const G4DynamicParticle* dp,
125  G4double tmax,
126  G4double length,
127  G4double averageLoss)
128 {
129  // Calculate actual loss from the mean loss.
130  // The model used to get the fluctuations is essentially the same
131  // as in Glandz in Geant3 (Cern program library W5013, phys332).
132  // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual
133 
134  // shortcut for very small loss or from a step nearly equal to the range
135  // (out of validity of the model)
136  //
137  G4double meanLoss = averageLoss;
138  G4double tkin = dp->GetKineticEnergy();
139  //G4cout<< "Emean= "<< meanLoss<< " tmax= "<< tmax<< " L= "<<length<<G4endl;
140  if (meanLoss < minLoss) { return meanLoss; }
141 
142  if(!particle) { InitialiseMe(dp->GetDefinition()); }
143 
144  G4double tau = tkin/particleMass;
145  G4double gam = tau + 1.0;
146  G4double gam2 = gam*gam;
147  G4double beta2 = tau*(tau + 2.0)/gam2;
148 
149  G4double loss(0.), siga(0.);
150 
151  const G4Material* material = couple->GetMaterial();
152 
153  // Gaussian regime
154  // for heavy particles only and conditions
155  // for Gauusian fluct. has been changed
156  //
157  if ((particleMass > electron_mass_c2) &&
158  (meanLoss >= minNumberInteractionsBohr*tmax))
159  {
160  G4double massrate = electron_mass_c2/particleMass ;
161  G4double tmaxkine = 2.*electron_mass_c2*beta2*gam2/
162  (1.+massrate*(2.*gam+massrate)) ;
163  if (tmaxkine <= 2.*tmax)
164  {
165  electronDensity = material->GetElectronDensity();
166  siga = sqrt((1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
167  * electronDensity * chargeSquare);
168 
169 
170  G4double sn = meanLoss/siga;
171 
172  // thick target case
173  if (sn >= 2.0) {
174 
175  G4double twomeanLoss = meanLoss + meanLoss;
176  do {
177  loss = G4RandGauss::shoot(meanLoss,siga);
178  } while (0.0 > loss || twomeanLoss < loss);
179 
180  // Gamma distribution
181  } else {
182 
183  G4double neff = sn*sn;
184  loss = meanLoss*G4RandGamma::shoot(neff,1.0)/neff;
185  }
186  //G4cout << "Gauss: " << loss << G4endl;
187  return loss;
188  }
189  }
190 
191  // Glandz regime : initialisation
192  //
193  if (material != lastMaterial) {
194  f1Fluct = material->GetIonisation()->GetF1fluct();
195  f2Fluct = material->GetIonisation()->GetF2fluct();
196  e1Fluct = material->GetIonisation()->GetEnergy1fluct();
197  e2Fluct = material->GetIonisation()->GetEnergy2fluct();
198  e1LogFluct = material->GetIonisation()->GetLogEnergy1fluct();
199  e2LogFluct = material->GetIonisation()->GetLogEnergy2fluct();
200  ipotFluct = material->GetIonisation()->GetMeanExcitationEnergy();
201  ipotLogFluct = material->GetIonisation()->GetLogMeanExcEnergy();
202  e0 = material->GetIonisation()->GetEnergy0fluct();
203  esmall = 0.5*sqrt(e0*ipotFluct);
204  lastMaterial = material;
205  }
206 
207  // very small step or low-density material
208  if(tmax <= e0) { return meanLoss; }
209 
210  G4double losstot = 0.;
211  G4int nstep = 1;
212  if(meanLoss < 25.*ipotFluct)
213  {
214  if(G4UniformRand() < 0.04*meanLoss/ipotFluct)
215  { nstep = 1; }
216  else
217  {
218  nstep = 2;
219  meanLoss *= 0.5;
220  }
221  }
222 
223  for (G4int istep=0; istep < nstep; ++istep) {
224 
225  loss = 0.;
226 
227  G4double a1 = 0. , a2 = 0., a3 = 0. ;
228 
229  if(tmax > ipotFluct) {
230  G4double w2 = G4Log(2.*electron_mass_c2*beta2*gam2)-beta2;
231 
232  if(w2 > ipotLogFluct) {
233  G4double C = meanLoss*(1.-rate)/(w2-ipotLogFluct);
234  a1 = C*f1Fluct*(w2-e1LogFluct)/e1Fluct;
235  if(w2 > e2LogFluct) {
236  a2 = C*f2Fluct*(w2-e2LogFluct)/e2Fluct;
237  }
238  if(a1 < nmaxCont) {
239  //small energy loss
240  G4double sa1 = sqrt(a1);
241  if(G4UniformRand() < g4pow->expA(-sa1))
242  {
243  e1 = esmall;
244  a1 = meanLoss*(1.-rate)/e1;
245  a2 = 0.;
246  e2 = e2Fluct;
247  }
248  else
249  {
250  a1 = sa1 ;
251  e1 = sa1*e1Fluct;
252  e2 = e2Fluct;
253  }
254 
255  } else {
256  //not small energy loss
257  //correction to get better fwhm value
258  a1 /= fw;
259  e1 = fw*e1Fluct;
260  e2 = e2Fluct;
261  }
262  }
263  }
264 
265  G4double w1 = tmax/e0;
266  if(tmax > e0) {
267  a3 = rate*meanLoss*(tmax-e0)/(e0*tmax*G4Log(w1));
268  }
269  //'nearly' Gaussian fluctuation if a1>nmaxCont&&a2>nmaxCont&&a3>nmaxCont
270  G4double emean = 0.;
271  G4double sig2e = 0., sige = 0.;
272  G4double p1 = 0., p2 = 0., p3 = 0.;
273 
274  // excitation of type 1
275  if(a1 > nmaxCont)
276  {
277  emean += a1*e1;
278  sig2e += a1*e1*e1;
279  }
280  else if(a1 > 0.)
281  {
282  p1 = G4double(G4Poisson(a1));
283  loss += p1*e1;
284  if(p1 > 0.) {
285  loss += (1.-2.*G4UniformRand())*e1;
286  }
287  }
288 
289 
290  // excitation of type 2
291  if(a2 > nmaxCont)
292  {
293  emean += a2*e2;
294  sig2e += a2*e2*e2;
295  }
296  else if(a2 > 0.)
297  {
298  p2 = G4double(G4Poisson(a2));
299  loss += p2*e2;
300  if(p2 > 0.)
301  loss += (1.-2.*G4UniformRand())*e2;
302  }
303 
304  if(emean > 0.)
305  {
306  sige = sqrt(sig2e);
307  loss += max(0.,G4RandGauss::shoot(emean,sige));
308  }
309 
310  // ionisation
311  G4double lossc = 0.;
312  if(a3 > 0.) {
313  emean = 0.;
314  sig2e = 0.;
315  sige = 0.;
316  p3 = a3;
317  G4double alfa = 1.;
318  if(a3 > nmaxCont)
319  {
320  alfa = w1*(nmaxCont+a3)/(w1*nmaxCont+a3);
321  G4double alfa1 = alfa*G4Log(alfa)/(alfa-1.);
322  G4double namean = a3*w1*(alfa-1.)/((w1-1.)*alfa);
323  emean += namean*e0*alfa1;
324  sig2e += e0*e0*namean*(alfa-alfa1*alfa1);
325  p3 = a3-namean;
326  }
327 
328  G4double w2 = alfa*e0;
329  G4double w = (tmax-w2)/tmax;
330  G4int nb = G4Poisson(p3);
331  if(nb > 0) {
332  for (G4int k=0; k<nb; k++) { lossc += w2/(1.-w*G4UniformRand()); }
333  }
334  }
335 
336  if(emean > 0.)
337  {
338  sige = sqrt(sig2e);
339  lossc += max(0.,G4RandGauss::shoot(emean,sige));
340  }
341 
342  loss += lossc;
343 
344  losstot += loss;
345  }
346  //G4cout << "Vavilov: " << losstot << " Nstep= " << nstep << G4endl;
347 
348  return losstot;
349 
350 }
351 
352 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
353 
354 
356  const G4Material* material,
357  const G4DynamicParticle* dp,
358  G4double tmax,
359  G4double length)
360 {
361  if(!particle) { InitialiseMe(dp->GetDefinition()); }
362 
363  electronDensity = material->GetElectronDensity();
364 
365  G4double gam = (dp->GetKineticEnergy())/particleMass + 1.0;
366  G4double beta2 = 1.0 - 1.0/(gam*gam);
367 
368  G4double siga = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
369  * electronDensity * chargeSquare;
370 
371  return siga;
372 }
373 
374 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo....
375 
376 void
378  G4double q2)
379 {
380  if(part != particle) {
381  particle = part;
382  particleMass = part->GetPDGMass();
383  }
384  chargeSquare = q2;
385 }
386 
387 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
static G4Pow * GetInstance()
Definition: G4Pow.cc:53
ThreeVector shoot(const G4int Ap, const G4int Af)
G4IonisParamMat * GetIonisation() const
Definition: G4Material.hh:224
G4long G4Poisson(G4double mean)
Definition: G4Poisson.hh:51
G4double GetKineticEnergy() const
G4double expA(G4double A) const
Definition: G4Pow.hh:238
G4double GetEnergy2fluct() const
G4double GetLogEnergy2fluct() const
G4UniversalFluctuation(const G4String &nam="UniFluc")
G4ParticleDefinition * GetDefinition() const
G4double GetLogMeanExcEnergy() const
int G4int
Definition: G4Types.hh:78
virtual G4double Dispersion(const G4Material *, const G4DynamicParticle *, G4double, G4double)
string material
Definition: eplot.py:19
G4double GetEnergy0fluct() const
#define G4UniformRand()
Definition: Randomize.hh:87
virtual void SetParticleAndCharge(const G4ParticleDefinition *, G4double q2)
G4double GetElectronDensity() const
Definition: G4Material.hh:215
TString part[npart]
Definition: Style.C:32
float proton_mass_c2
Definition: hepunit.py:275
float electron_mass_c2
Definition: hepunit.py:274
virtual void InitialiseMe(const G4ParticleDefinition *)
virtual G4double SampleFluctuations(const G4MaterialCutsCouple *, const G4DynamicParticle *, G4double, G4double, G4double)
G4double G4Log(G4double x)
Definition: G4Log.hh:227
G4double GetLogEnergy1fluct() const
G4double GetPDGMass() const
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4double GetMeanExcitationEnergy() const
G4double GetF2fluct() const
double G4double
Definition: G4Types.hh:76
G4double GetPDGCharge() const
G4double GetF1fluct() const
const G4Material * GetMaterial() const
G4double GetEnergy1fluct() const