Geant4_10
G4PreCompoundDeuteron.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4PreCompoundDeuteron.cc 68028 2013-03-13 13:48:15Z gcosmo $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4PreCompoundDeuteron
34 //
35 // Author: V.Lara
36 //
37 // Modified:
38 // 21.08.2008 J. M. Quesada add choice of options
39 // 20.08.2010 V.Ivanchenko added G4Pow and G4PreCompoundParameters pointers
40 // use int Z and A and cleanup
41 //
42 
43 #include "G4PreCompoundDeuteron.hh"
44 #include "G4SystemOfUnits.hh"
45 #include "G4Deuteron.hh"
46 
48  : G4PreCompoundIon(G4Deuteron::Deuteron(), &theDeuteronCoulombBarrier)
49 {
50  theA = GetA();
51  theZ = GetZ();
52  ResidualA = ResidualZ = 0;
53  ResidualAthrd = FragmentAthrd = 0.0;
54  FragmentA = theA;
55 }
56 
58 {}
59 
61 {
62  return G4double((N-1)*(N-2)*(P-1)*P)/2.0;
63 }
64 
66 {
67  return 16.0/G4double(A);
68 }
69 
71 {
72  G4double rj = 0.0;
73  if(nCharged >=1 && (nParticles-nCharged) >=1) {
74  G4double denominator = G4double(nParticles*(nParticles-1));
75  rj = 2*nCharged*(nParticles-nCharged)/denominator;
76  }
77  return rj;
78 }
79 
81 //J. M. Quesada (Dec 2007-June 2008): New inverse reaction cross sections
82 //OPT=0 Dostrovski's parameterization
83 //OPT=1,2 Chatterjee's paramaterization
84 //OPT=3,4 Kalbach's parameterization
85 //
87 {
88  ResidualA = GetRestA();
89  ResidualZ = GetRestZ();
90  theA = GetA();
91  theZ = GetZ();
92  ResidualAthrd = ResidualA13();
93  FragmentA = theA + ResidualA;
94  FragmentAthrd = g4pow->Z13(FragmentA);
95 
96  if (OPTxs==0) { return GetOpt0( K); }
97  else if( OPTxs==1 || OPTxs==2) { return GetOpt12( K); }
98  else if (OPTxs==3 || OPTxs==4) { return GetOpt34( K); }
99  else{
100  std::ostringstream errOs;
101  errOs << "BAD DEUTERON CROSS SECTION OPTION !!" <<G4endl;
102  throw G4HadronicException(__FILE__, __LINE__, errOs.str());
103  return 0.;
104  }
105 }
106 
108 {
109  G4double C = 0.0;
110  G4int aZ = theZ + ResidualZ;
111  if (aZ >= 70)
112  {
113  C = 0.10;
114  }
115  else
116  {
117  C = ((((0.15417e-06*aZ) - 0.29875e-04)*aZ + 0.21071e-02)*aZ - 0.66612e-01)*aZ + 0.98375;
118  }
119  return 1.0 + C/2.0;
120 }
121 //
122 //********************* OPT=1,2 : Chatterjee's cross section ********************
123 //(fitting to cross section from Bechetti & Greenles OM potential)
124 
126 {
127  G4double Kc = K;
128 
129  // JMQ xsec is set constat above limit of validity
130  if (K > 50*MeV) { Kc = 50*MeV; }
131 
132  G4double landa ,mu ,nu ,p , Ec,q,r,ji,xs;
133 
134  G4double p0 = -38.21;
135  G4double p1 = 922.6;
136  G4double p2 = -2804.;
137  G4double landa0 = -0.0323;
138  G4double landa1 = -5.48;
139  G4double mm0 = 336.1;
140  G4double mu1 = 0.48;
141  G4double nu0 = 524.3;
142  G4double nu1 = -371.8;
143  G4double nu2 = -5.924;
144  G4double delta=1.2;
145 
146  Ec = 1.44*theZ*ResidualZ/(1.5*ResidualAthrd+delta);
147  p = p0 + p1/Ec + p2/(Ec*Ec);
148  landa = landa0*ResidualA + landa1;
149  G4double resmu1 = g4pow->powZ(ResidualA,mu1);
150  mu = mm0*resmu1;
151  nu = resmu1*(nu0 + nu1*Ec + nu2*(Ec*Ec));
152  q = landa - nu/(Ec*Ec) - 2*p*Ec;
153  r = mu + 2*nu/Ec + p*(Ec*Ec);
154 
155  ji=std::max(Kc,Ec);
156  if(Kc < Ec) { xs = p*Kc*Kc + q*Kc + r;}
157  else {xs = p*(Kc - ji)*(Kc - ji) + landa*Kc + mu + nu*(2 - Kc/ji)/ji ;}
158 
159  if (xs <0.0) {xs=0.0;}
160 
161  return xs;
162 }
163 
164 // *********** OPT=3,4 : Kalbach's cross sections (from PRECO code)*************
166 // ** d from o.m. of perey and perey
167 {
168 
169  G4double landa, mu, nu, p ,signor(1.),sig;
170  G4double ec,ecsq,xnulam,etest(0.),a;
171  G4double b,ecut,cut,ecut2,geom,elab;
172 
173  G4double flow = 1.e-18;
174  G4double spill= 1.e+18;
175 
176  G4double p0 = 0.798;
177  G4double p1 = 420.3;
178  G4double p2 = -1651.;
179  G4double landa0 = 0.00619;
180  G4double landa1 = -7.54;
181  G4double mm0 = 583.5;
182  G4double mu1 = 0.337;
183  G4double nu0 = 421.8;
184  G4double nu1 = -474.5;
185  G4double nu2 = -3.592;
186 
187  G4double ra=0.80;
188 
189  //JMQ 13/02/09 increase of reduced radius to lower the barrier
190  // ec = 1.44 * theZ * ResidualZ / (1.5*ResidualAthrd+ra);
191  ec = 1.44 * theZ * ResidualZ / (1.7*ResidualAthrd+ra);
192  ecsq = ec * ec;
193  p = p0 + p1/ec + p2/ecsq;
194  landa = landa0*ResidualA + landa1;
195  a = g4pow->powZ(ResidualA,mu1);
196  mu = mm0 * a;
197  nu = a* (nu0+nu1*ec+nu2*ecsq);
198  xnulam = nu / landa;
199  if (xnulam > spill) { xnulam=0.; }
200  if (xnulam >= flow) { etest = 1.2 *std::sqrt(xnulam); }
201 
202  a = -2.*p*ec + landa - nu/ecsq;
203  b = p*ecsq + mu + 2.*nu/ec;
204  ecut = 0.;
205  cut = a*a - 4.*p*b;
206  if (cut > 0.) { ecut = std::sqrt(cut); }
207  ecut = (ecut-a) / (p+p);
208  ecut2 = ecut;
209  //JMQ 290310 for avoiding unphysical increase below minimum (at ecut)
210  //ecut<0 means that there is no cut with energy axis, i.e. xs is set
211  //to 0 bellow minimum
212  // if (cut < 0.) ecut2 = ecut - 2.;
213  if (cut < 0.) { ecut2 = ecut; }
214  elab = K * FragmentA / G4double(ResidualA);
215  sig = 0.;
216 
217  if (elab <= ec) { //start for E<Ec
218  if (elab > ecut2) { sig = (p*elab*elab+a*elab+b) * signor; }
219  } //end for E<Ec
220  else { //start for E>Ec
221  sig = (landa*elab+mu+nu/elab) * signor;
222  geom = 0.;
223  if (xnulam < flow || elab < etest) { return sig; }
224  geom = std::sqrt(theA*K);
225  geom = 1.23*ResidualAthrd + ra + 4.573/geom;
226  geom = 31.416 * geom * geom;
227  sig = std::max(geom,sig);
228  } //end for E>Ec
229  return sig;
230 }
virtual G4double CrossSection(G4double ekin)
tuple a
Definition: test.py:11
G4double ResidualA13() const
const char * p
Definition: xmltok.h:285
G4int GetA() const
G4double GetOpt34(G4double K)
G4double GetOpt0(G4double ekin)
int G4int
Definition: G4Types.hh:78
tuple b
Definition: test.py:12
G4double Z13(G4int Z) const
Definition: G4Pow.hh:129
G4int GetRestZ() const
G4double GetOpt12(G4double K)
jump r
Definition: plot.C:36
T max(const T t1, const T t2)
brief Return the largest of the two arguments
G4int GetRestA() const
#define G4endl
Definition: G4ios.hh:61
**D E S C R I P T I O N
Definition: HEPEvtcom.cc:77
G4int GetZ() const
G4double powZ(G4int Z, G4double y) const
Definition: G4Pow.hh:258
double G4double
Definition: G4Types.hh:76
virtual G4double GetRj(G4int NumberParticles, G4int NumberCharged)
virtual G4double CoalescenceFactor(G4int A)
virtual G4double FactorialFactor(G4int N, G4int P)