Geant4_10
G4MuonVDNuclearModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: $
27 //
28 // Author: D.H. Wright
29 // Date: 2 February 2011
30 //
31 // Description: model of muon nuclear interaction in which a gamma from
32 // the virtual photon spectrum interacts in the nucleus as
33 // a real gamma at low energies and as a pi0 at high energies.
34 // Kokoulin's muon cross section and equivalent gamma spectrum
35 // are used.
36 //
37 
38 #include "G4MuonVDNuclearModel.hh"
39 
40 #include "Randomize.hh"
41 #include "G4PhysicalConstants.hh"
42 #include "G4SystemOfUnits.hh"
43 #include "G4CascadeInterface.hh"
44 #include "G4TheoFSGenerator.hh"
46 #include "G4ExcitationHandler.hh"
47 #include "G4PreCompoundModel.hh"
49 #include "G4ExcitedStringDecay.hh"
50 #include "G4FTFModel.hh"
51 
53  : G4HadronicInteraction("G4MuonVDNuclearModel")
54 {
55  SetMinEnergy(0.0);
56  SetMaxEnergy(1*PeV);
57  CutFixed = 0.2*GeV;
58  NBIN = 1000;
59 
60  for (G4int k = 0; k < 5; k++) {
61  for (G4int j = 0; j < 8; j++) {
62  for (G4int i = 0; i < 1001; i++) {
63  proba[k][j][i] = 0.0;
64  ya[i] = 0.0;
65  }
66  }
67  }
68 
69  MakeSamplingTable();
70 
71  // Build FTFP model
72  ftfp = new G4TheoFSGenerator();
73  precoInterface = new G4GeneratorPrecompoundInterface();
74  theHandler = new G4ExcitationHandler();
75  preEquilib = new G4PreCompoundModel(theHandler);
76  precoInterface->SetDeExcitation(preEquilib);
77  ftfp->SetTransport(precoInterface);
78  theFragmentation = new G4LundStringFragmentation();
79  theStringDecay = new G4ExcitedStringDecay(theFragmentation);
80  theStringModel = new G4FTFModel;
81  theStringModel->SetFragmentationModel(theStringDecay);
82  ftfp->SetHighEnergyGenerator(theStringModel);
83 
84  // Build Bertini cascade
85  bert = new G4CascadeInterface();
86 }
87 
88 
90 {
91  delete ftfp;
92  delete preEquilib;
93  delete theFragmentation;
94  delete theStringDecay;
95  delete theStringModel;
96  delete bert;
97 }
98 
99 
102  G4Nucleus& targetNucleus)
103 {
105 
106  // For very low energy, return initial track
107  G4double epmax = aTrack.GetTotalEnergy() - 0.5*proton_mass_c2;
108  if (epmax <= CutFixed) {
112  return &theParticleChange;
113  }
114 
115  // Produce recoil muon and transferred photon
116  G4DynamicParticle* transferredPhoton = CalculateEMVertex(aTrack, targetNucleus);
117 
118  // Interact the gamma with the nucleus
119  CalculateHadronicVertex(transferredPhoton, targetNucleus);
120  return &theParticleChange;
121 }
122 
123 
125 G4MuonVDNuclearModel::CalculateEMVertex(const G4HadProjectile& aTrack,
126  G4Nucleus& targetNucleus)
127 {
128  // Select sampling table
129  G4double KineticEnergy = aTrack.GetKineticEnergy();
130  G4double TotalEnergy = aTrack.GetTotalEnergy();
132  G4double lnZ = std::log(G4double(targetNucleus.GetZ_asInt() ) );
133 
134  G4double epmin = CutFixed;
135  G4double epmax = TotalEnergy - 0.5*proton_mass_c2;
136  G4double m0 = 0.2*GeV;
137 
138  G4double delmin = 1.e10;
139  G4double del;
140  G4int izz = 0;
141  G4int itt = 0;
142  G4int NBINminus1 = NBIN - 1;
143 
144  G4int nzdat = 5;
145  G4double zdat[] = {1.,4.,13.,29.,92.};
146  for (G4int iz = 0; iz < nzdat; iz++) {
147  del = std::abs(lnZ-std::log(zdat[iz]));
148  if (del < delmin) {
149  delmin = del;
150  izz = iz;
151  }
152  }
153 
154  G4int ntdat = 8;
155  G4double tdat[] = {1.e3,1.e4,1.e5,1.e6,1.e7,1.e8,1.e9,1.e10};
156  delmin = 1.e10;
157  for (G4int it = 0; it < ntdat; it++) {
158  del = std::abs(std::log(KineticEnergy)-std::log(tdat[it]) );
159  if (del < delmin) {
160  delmin = del;
161  itt = it;
162  }
163  }
164 
165  // Sample the energy transfer according to the probability table
167 
168  G4int iy = -1;
169  do {
170  iy += 1 ;
171  } while (((proba[izz][itt][iy]) < r)&&(iy < NBINminus1)) ;
172 
173  // Sampling is done uniformly in y in the bin
174 
175  G4double y;
176  if (iy < NBIN)
177  y = ya[iy] + G4UniformRand() * (ya[iy+1] - ya[iy]);
178  else
179  y = ya[iy];
180 
181  G4double x = std::exp(y);
182  G4double ep = epmin*std::exp(x*std::log(epmax/epmin) );
183 
184  // Sample scattering angle of mu, but first t should be sampled.
185  G4double yy = ep/TotalEnergy;
186  G4double tmin = Mass*Mass*yy*yy/(1.-yy);
187  G4double tmax = 2.*proton_mass_c2*ep;
188  G4double t1;
189  G4double t2;
190  if (m0 < ep) {
191  t1 = m0*m0;
192  t2 = ep*ep;
193  } else {
194  t1 = ep*ep;
195  t2 = m0*m0;
196  }
197 
198  G4double w1 = tmax*t1;
199  G4double w2 = tmax+t1;
200  G4double w3 = tmax*(tmin+t1)/(tmin*w2);
201  G4double y1 = 1.-yy;
202  G4double y2 = 0.5*yy*yy;
203  G4double y3 = y1+y2;
204 
205  G4double t;
206  G4double rej;
207 
208  // Now sample t
209  G4int ntry = 0;
210  do
211  {
212  ntry += 1;
213  t = w1/(w2*std::exp(G4UniformRand()*std::log(w3))-tmax);
214  rej = (1.-t/tmax)*(y1*(1.-tmin/t)+y2)/(y3*(1.-t/t2));
215  } while (G4UniformRand() > rej) ;
216 
217  // compute angle from t
218  G4double sinth2 =
219  0.5*(t-tmin)/(2.*(TotalEnergy*(TotalEnergy-ep)-Mass*Mass)-tmin);
220  G4double theta = std::acos(1. - 2.*sinth2);
221 
222  G4double phi = twopi*G4UniformRand();
223  G4double sinth = std::sin(theta);
224  G4double dirx = sinth*std::cos(phi);
225  G4double diry = sinth*std::sin(phi);
226  G4double dirz = std::cos(theta);
227  G4ThreeVector finalDirection(dirx,diry,dirz);
228  G4ThreeVector ParticleDirection(aTrack.Get4Momentum().vect().unit() );
229  finalDirection.rotateUz(ParticleDirection);
230 
231  G4double NewKinEnergy = KineticEnergy - ep;
232  G4double finalMomentum = std::sqrt(NewKinEnergy*(NewKinEnergy+2.*Mass) );
233  G4double Ef = NewKinEnergy + Mass;
234  G4double initMomentum = std::sqrt(KineticEnergy*(TotalEnergy+Mass) );
235 
236  // Set energy and direction of scattered primary in theParticleChange
238  theParticleChange.SetEnergyChange(NewKinEnergy);
239  theParticleChange.SetMomentumChange(finalDirection);
240 
241  // Now create the emitted gamma
242  G4LorentzVector primaryMomentum(initMomentum*ParticleDirection, TotalEnergy);
243  G4LorentzVector fsMomentum(finalMomentum*finalDirection, Ef);
244  G4LorentzVector momentumTransfer = primaryMomentum - fsMomentum;
245 
246  G4DynamicParticle* gamma =
247  new G4DynamicParticle(G4Gamma::Gamma(), momentumTransfer);
248 
249  return gamma;
250 }
251 
252 
253 void
254 G4MuonVDNuclearModel::CalculateHadronicVertex(G4DynamicParticle* incident,
255  G4Nucleus& target)
256 {
257  G4HadFinalState* hfs = 0;
258  G4double gammaE = incident->GetTotalEnergy();
259 
260  if (gammaE < 10*GeV) {
261  G4HadProjectile projectile(*incident);
262  hfs = bert->ApplyYourself(projectile, target);
263  } else {
264  // convert incident gamma to a pi0
266  G4double piKE = incident->GetTotalEnergy() - piMass;
267  G4double piMom = std::sqrt(piKE*(piKE + 2*piMass) );
268  G4ThreeVector piMomentum(incident->GetMomentumDirection() );
269  piMomentum *= piMom;
270  G4DynamicParticle theHadron(G4PionZero::PionZero(), piMomentum);
271  G4HadProjectile projectile(theHadron);
272  hfs = ftfp->ApplyYourself(projectile, target);
273  }
274 
275  delete incident;
276 
277  // Copy secondaries from sub-model to model
279 }
280 
281 
282 void G4MuonVDNuclearModel::MakeSamplingTable()
283 {
284  G4double adat[] = {1.01,9.01,26.98,63.55,238.03};
285  G4double zdat[] = {1.,4.,13.,29.,92.};
286  G4int nzdat = 5;
287 
288  G4double tdat[] = {1.e3,1.e4,1.e5,1.e6,1.e7,1.e8,1.e9,1.e10};
289  G4int ntdat = 8;
290 
291  G4int nbin;
292  G4double KineticEnergy;
293  G4double TotalEnergy;
294  G4double Maxep;
295  G4double CrossSection;
296 
297  G4double c;
298  G4double y;
299  G4double ymin,ymax;
300  G4double dy,yy;
301  G4double dx,x;
302  G4double ep;
303 
304  G4double AtomicNumber;
305  G4double AtomicWeight;
306 
307  for (G4int iz = 0; iz < nzdat; iz++) {
308  AtomicNumber = zdat[iz];
309  AtomicWeight = adat[iz]*(g/mole);
310 
311  for (G4int it = 0; it < ntdat; it++) {
312  KineticEnergy = tdat[it];
313  TotalEnergy = KineticEnergy + G4MuonMinus::MuonMinus()->GetPDGMass();
314  Maxep = TotalEnergy - 0.5*proton_mass_c2;
315 
316  CrossSection = 0.0;
317 
318  // Calculate the differential cross section
319  // numerical integration in log .........
320  c = std::log(Maxep/CutFixed);
321  ymin = -5.0;
322  ymax = 0.0;
323  dy = (ymax-ymin)/NBIN;
324 
325  nbin=-1;
326 
327  y = ymin - 0.5*dy;
328  yy = ymin - dy;
329  for (G4int i = 0; i < NBIN; i++) {
330  y += dy;
331  x = std::exp(y);
332  yy += dy;
333  dx = std::exp(yy+dy)-std::exp(yy);
334 
335  ep = CutFixed*std::exp(c*x);
336 
337  CrossSection +=
338  ep*dx*muNucXS.ComputeDDMicroscopicCrossSection(KineticEnergy,
339  AtomicNumber,
340  AtomicWeight, ep);
341  if (nbin < NBIN) {
342  nbin += 1;
343  ya[nbin] = y;
344  proba[iz][it][nbin] = CrossSection;
345  }
346  }
347  ya[NBIN] = 0.;
348 
349  if (CrossSection > 0.0) {
350  for (G4int ib = 0; ib <= nbin; ib++) proba[iz][it][ib] /= CrossSection;
351  }
352  } // loop on it
353  } // loop on iz
354 
355  // G4cout << " Kokoulin XS = "
356  // << muNucXS.ComputeDDMicroscopicCrossSection(1*GeV, 20.0, 40.0*g/mole, 0.3*GeV)/millibarn
357  // << G4endl;
358 }
359 
Double_t y2[nxs]
Definition: Style.C:21
Double_t yy
Definition: macro.C:11
TTree * t1
Definition: plottest35.C:26
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
Double_t y1[nxs]
Definition: Style.C:20
void AddSecondaries(const std::vector< G4HadSecondary > &addSecs)
G4double GetTotalEnergy() const
void SetFragmentationModel(G4VStringFragmentation *aModel)
G4double ComputeDDMicroscopicCrossSection(G4double incidentKE, G4double, G4double AtomicWeight, G4double epsilon)
tuple x
Definition: test.py:50
const XML_Char * target
Definition: expat.h:268
int G4int
Definition: G4Types.hh:78
void SetHighEnergyGenerator(G4VHighEnergyGenerator *const value)
void SetStatusChange(G4HadFinalStateStatus aS)
Double_t y
Definition: plot.C:279
function g(Y1, Y2, PT2)
Definition: hijing1.383.f:5205
void SetMinEnergy(G4double anEnergy)
Hep3Vector vect() const
#define G4UniformRand()
Definition: Randomize.hh:87
const G4ThreeVector & GetMomentumDirection() const
G4double iz
Definition: TRTMaterials.hh:39
G4double GetKineticEnergy() const
Hep3Vector & rotateUz(const Hep3Vector &)
Definition: ThreeVector.cc:72
float proton_mass_c2
Definition: hepunit.py:275
static G4Gamma * Gamma()
Definition: G4Gamma.cc:86
const G4LorentzVector & Get4Momentum() const
static G4PionZero * PionZero()
Definition: G4PionZero.cc:104
void SetEnergyChange(G4double anEnergy)
jump r
Definition: plot.C:36
G4double GetPDGMass() const
Hep3Vector unit() const
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
void SetMaxEnergy(const G4double anEnergy)
void SetDeExcitation(G4VPreCompoundModel *ptr)
TTree * t2
Definition: plottest35.C:36
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
void SetTransport(G4VIntraNuclearTransportModel *const value)
double G4double
Definition: G4Types.hh:76
tuple c
Definition: test.py:13
void SetMomentumChange(const G4ThreeVector &aV)
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double GetTotalEnergy() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus)