60   for (
G4int k = 0; k < 5; k++) {
 
   61     for (
G4int j = 0; j < 8; j++) {
 
   62       for (
G4int i = 0; i < 1001; i++) {
 
   93   delete theFragmentation;
 
   94   delete theStringDecay;
 
   95   delete theStringModel;
 
  108   if (epmax <= CutFixed) {
 
  119   CalculateHadronicVertex(transferredPhoton, targetNucleus);
 
  142   G4int NBINminus1 = NBIN - 1;
 
  145   G4double zdat[] = {1.,4.,13.,29.,92.};
 
  147     del = std::abs(lnZ-std::log(zdat[
iz]));
 
  155   G4double tdat[] = {1.e3,1.e4,1.e5,1.e6,1.e7,1.e8,1.e9,1.e10};
 
  157   for (
G4int it = 0; it < ntdat; it++) {
 
  158     del = std::abs(std::log(KineticEnergy)-std::log(tdat[it]) );
 
  171      } 
while (((proba[izz][itt][iy]) < r)&&(iy < NBINminus1)) ;
 
  182   G4double ep = epmin*std::exp(x*std::log(epmax/epmin) );
 
  214     rej = (1.-t/tmax)*(y1*(1.-tmin/t)+
y2)/(y3*(1.-t/t2)); 
 
  219              0.5*(t-tmin)/(2.*(TotalEnergy*(TotalEnergy-ep)-Mass*Mass)-tmin);
 
  220   G4double theta = std::acos(1. - 2.*sinth2);
 
  224   G4double dirx = sinth*std::cos(phi);
 
  225   G4double diry = sinth*std::sin(phi);
 
  229   finalDirection.
rotateUz(ParticleDirection);
 
  231   G4double NewKinEnergy = KineticEnergy - ep;
 
  232   G4double finalMomentum = std::sqrt(NewKinEnergy*(NewKinEnergy+2.*Mass) );
 
  234   G4double initMomentum = std::sqrt(KineticEnergy*(TotalEnergy+Mass) );
 
  242   G4LorentzVector primaryMomentum(initMomentum*ParticleDirection, TotalEnergy);
 
  260   if (gammaE < 10*
GeV) {
 
  267     G4double piMom = std::sqrt(piKE*(piKE + 2*piMass) );
 
  282 void G4MuonVDNuclearModel::MakeSamplingTable()
 
  284   G4double adat[] = {1.01,9.01,26.98,63.55,238.03};
 
  285   G4double zdat[] = {1.,4.,13.,29.,92.};
 
  288   G4double tdat[] = {1.e3,1.e4,1.e5,1.e6,1.e7,1.e8,1.e9,1.e10};
 
  308     AtomicNumber = zdat[
iz];
 
  309     AtomicWeight = adat[
iz]*(
g/
mole);  
 
  311     for (
G4int it = 0; it < ntdat; it++) {
 
  312       KineticEnergy = tdat[it];
 
  320       c = std::log(Maxep/CutFixed);
 
  323       dy = (ymax-ymin)/NBIN; 
 
  329       for (
G4int i = 0; i < NBIN; i++) {
 
  333         dx = std::exp(yy+dy)-std::exp(yy);
 
  335         ep = CutFixed*std::exp(c*x);
 
  344           proba[
iz][it][nbin] = CrossSection;
 
  349       if (CrossSection > 0.0) {
 
  350         for (
G4int ib = 0; ib <= nbin; ib++) proba[
iz][it][ib] /= CrossSection;
 
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
 
void AddSecondaries(const std::vector< G4HadSecondary > &addSecs)
 
G4double GetTotalEnergy() const 
 
void SetFragmentationModel(G4VStringFragmentation *aModel)
 
G4double ComputeDDMicroscopicCrossSection(G4double incidentKE, G4double, G4double AtomicWeight, G4double epsilon)
 
void SetHighEnergyGenerator(G4VHighEnergyGenerator *const value)
 
void SetStatusChange(G4HadFinalStateStatus aS)
 
void SetMinEnergy(G4double anEnergy)
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4double GetKineticEnergy() const 
 
Hep3Vector & rotateUz(const Hep3Vector &)
 
const G4LorentzVector & Get4Momentum() const 
 
static G4PionZero * PionZero()
 
void SetEnergyChange(G4double anEnergy)
 
G4double GetPDGMass() const 
 
void SetMaxEnergy(const G4double anEnergy)
 
void SetDeExcitation(G4VPreCompoundModel *ptr)
 
G4HadFinalState theParticleChange
 
static G4MuonMinus * MuonMinus()
 
void SetTransport(G4VIntraNuclearTransportModel *const value)
 
void SetMomentumChange(const G4ThreeVector &aV)
 
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetTotalEnergy() const 
 
G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus)