Geant4_10
G4INCLCascade.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // INCL++ intra-nuclear cascade model
27 // Pekka Kaitaniemi, CEA and Helsinki Institute of Physics
28 // Davide Mancusi, CEA
29 // Alain Boudard, CEA
30 // Sylvie Leray, CEA
31 // Joseph Cugnon, University of Liege
32 //
33 #define INCLXX_IN_GEANT4_MODE 1
34 
35 #include "globals.hh"
36 
37 #ifndef G4INCLCascade_hh
38 #define G4INCLCascade_hh 1
39 
40 #include "G4INCLParticle.hh"
41 #include "G4INCLNucleus.hh"
43 #include "G4INCLCascadeAction.hh"
44 #include "G4INCLEventInfo.hh"
45 #include "G4INCLGlobalInfo.hh"
46 #include "G4INCLLogger.hh"
47 #include "G4INCLConfig.hh"
48 #include "G4INCLRootFinder.hh"
49 
50 namespace G4INCL {
51  class INCL {
52  public:
53  INCL(Config const * const config);
54 
55  ~INCL();
56 
58  INCL(const INCL &rhs);
59 
61  INCL &operator=(const INCL &rhs);
62 
63  G4bool prepareReaction(const ParticleSpecies &projectileSpecies, const G4double kineticEnergy, const G4int A, const G4int Z);
64  G4bool initializeTarget(const G4int A, const G4int Z);
65  inline const EventInfo &processEvent() {
66  return processEvent(
67  theConfig->getProjectileSpecies(),
68  theConfig->getProjectileKineticEnergy(),
69  theConfig->getTargetA(),
70  theConfig->getTargetZ()
71  );
72  }
73  const EventInfo &processEvent(
74  ParticleSpecies const &projectileSpecies,
75  const G4double kineticEnergy,
76  const G4int targetA,
77  const G4int targetZ
78  );
79 
80  void finalizeGlobalInfo();
81  const GlobalInfo &getGlobalInfo() const { return theGlobalInfo; }
82 
83  private:
84  IPropagationModel *propagationModel;
85  G4int theA, theZ;
86  G4bool targetInitSuccess;
87  G4double maxImpactParameter;
88  G4double maxUniverseRadius;
89  G4double maxInteractionDistance;
90  G4double fixedImpactParameter;
91  CascadeAction *cascadeAction;
92  Config const * const theConfig;
93  Nucleus *nucleus;
94  G4bool forceTransparent;
95 
96  EventInfo theEventInfo;
97  GlobalInfo theGlobalInfo;
98 
100  G4int minRemnantSize;
101 
103  class RecoilFunctor : public RootFunctor {
104  public:
109  RecoilFunctor(Nucleus * const n, const EventInfo &ei) :
110  RootFunctor(0., 1E6),
111  nucleus(n),
112  outgoingParticles(n->getStore()->getOutgoingParticles()),
113  theEventInfo(ei) {
114  for(ParticleIter p=outgoingParticles.begin(), e=outgoingParticles.end(); p!=e; ++p) {
115  particleMomenta.push_back((*p)->getMomentum());
116  particleKineticEnergies.push_back((*p)->getKineticEnergy());
117  }
118  ProjectileRemnant * const aPR = n->getProjectileRemnant();
119  if(aPR && aPR->getA()>0) {
120  particleMomenta.push_back(aPR->getMomentum());
121  particleKineticEnergies.push_back(aPR->getKineticEnergy());
122  outgoingParticles.push_back(aPR);
123  }
124  }
125  virtual ~RecoilFunctor() {}
126 
132  G4double operator()(const G4double x) const {
133  scaleParticleEnergies(x);
134  return nucleus->getConservationBalance(theEventInfo,true).energy;
135  }
136 
138  void cleanUp(const G4bool success) const {
139  if(!success)
140  scaleParticleEnergies(1.);
141  }
142 
143  private:
145  Nucleus *nucleus;
147  ParticleList outgoingParticles;
148  // \brief Reference to the EventInfo object
149  EventInfo const &theEventInfo;
151  std::list<ThreeVector> particleMomenta;
153  std::list<G4double> particleKineticEnergies;
154 
159  void scaleParticleEnergies(const G4double rescale) const {
160  // Rescale the energies (and the momenta) of the outgoing particles.
161  ThreeVector pBalance = nucleus->getIncomingMomentum();
162  std::list<ThreeVector>::const_iterator iP = particleMomenta.begin();
163  std::list<G4double>::const_iterator iE = particleKineticEnergies.begin();
164  for( ParticleIter i = outgoingParticles.begin(), e = outgoingParticles.end(); i!=e; ++i, ++iP, ++iE)
165  {
166  const G4double mass = (*i)->getMass();
167  const G4double newKineticEnergy = (*iE) * rescale;
168 
169  (*i)->setMomentum(*iP);
170  (*i)->setEnergy(mass + newKineticEnergy);
171  (*i)->adjustMomentumFromEnergy();
172 
173  pBalance -= (*i)->getMomentum();
174  }
175 
176  nucleus->setMomentum(pBalance);
177  const G4double remnantMass = ParticleTable::getTableMass(nucleus->getA(),nucleus->getZ()) + nucleus->getExcitationEnergy();
178  const G4double pRem2 = pBalance.mag2();
179  const G4double recoilEnergy = pRem2/
180  (std::sqrt(pRem2+remnantMass*remnantMass) + remnantMass);
181  nucleus->setEnergy(remnantMass + recoilEnergy);
182  }
183  };
184 
186  class RecoilCMFunctor : public RootFunctor {
187  public:
192  RecoilCMFunctor(Nucleus * const n, const EventInfo &ei) :
193  RootFunctor(0., 1E6),
194  nucleus(n),
195  theIncomingMomentum(nucleus->getIncomingMomentum()),
196  outgoingParticles(n->getStore()->getOutgoingParticles()),
197  theEventInfo(ei) {
198  thePTBoostVector = nucleus->getIncomingMomentum()/nucleus->getInitialEnergy();
199  for(ParticleIter p=outgoingParticles.begin(), e=outgoingParticles.end(); p!=e; ++p) {
200  (*p)->boost(thePTBoostVector);
201  particleCMMomenta.push_back((*p)->getMomentum());
202  }
203  ProjectileRemnant * const aPR = n->getProjectileRemnant();
204  if(aPR && aPR->getA()>0) {
205  aPR->boost(thePTBoostVector);
206  particleCMMomenta.push_back(aPR->getMomentum());
207  outgoingParticles.push_back(aPR);
208  }
209  }
210  virtual ~RecoilCMFunctor() {}
211 
217  G4double operator()(const G4double x) const {
218  scaleParticleCMMomenta(x);
219  return nucleus->getConservationBalance(theEventInfo,true).energy;
220  }
221 
223  void cleanUp(const G4bool success) const {
224  if(!success)
225  scaleParticleCMMomenta(1.);
226  }
227 
228  private:
230  Nucleus *nucleus;
232  ThreeVector thePTBoostVector;
234  ThreeVector theIncomingMomentum;
236  ParticleList outgoingParticles;
237  // \brief Reference to the EventInfo object
238  EventInfo const &theEventInfo;
240  std::list<ThreeVector> particleCMMomenta;
241 
246  void scaleParticleCMMomenta(const G4double rescale) const {
247  // Rescale the CM momenta of the outgoing particles.
248  ThreeVector remnantMomentum = theIncomingMomentum;
249  std::list<ThreeVector>::const_iterator iP = particleCMMomenta.begin();
250  for( ParticleIter i = outgoingParticles.begin(), e = outgoingParticles.end(); i!=e; ++i, ++iP)
251  {
252  (*i)->setMomentum(*iP * rescale);
253  (*i)->adjustEnergyFromMomentum();
254  (*i)->boost(-thePTBoostVector);
255 
256  remnantMomentum -= (*i)->getMomentum();
257  }
258 
259  nucleus->setMomentum(remnantMomentum);
260  const G4double remnantMass = ParticleTable::getTableMass(nucleus->getA(),nucleus->getZ()) + nucleus->getExcitationEnergy();
261  const G4double pRem2 = remnantMomentum.mag2();
262  const G4double recoilEnergy = pRem2/
263  (std::sqrt(pRem2+remnantMass*remnantMass) + remnantMass);
264  nucleus->setEnergy(remnantMass + recoilEnergy);
265  }
266  };
267 
273  void rescaleOutgoingForRecoil();
274 
275 #ifndef INCLXX_IN_GEANT4_MODE
276 
285  void globalConservationChecks(G4bool afterRecoil);
286 #endif
287 
293  G4bool continueCascade();
294 
312  G4int makeProjectileRemnant();
313 
321  void makeCompoundNucleus();
322 
324  G4bool preCascade(ParticleSpecies const projectileSpecies, const G4double kineticEnergy);
325 
327  void cascade();
328 
330  void postCascade();
331 
336  void initMaxInteractionDistance(ParticleSpecies const &p, const G4double kineticEnergy);
337 
343  void initUniverseRadius(ParticleSpecies const &p, const G4double kineticEnergy, const G4int A, const G4int Z);
344 
346  void updateGlobalInfo();
347  };
348 }
349 
350 #endif
INCL & operator=(const INCL &rhs)
Dummy assignment operator to silence Coverity warning.
const GlobalInfo & getGlobalInfo() const
G4bool prepareReaction(const ParticleSpecies &projectileSpecies, const G4double kineticEnergy, const G4int A, const G4int Z)
G4int getTargetZ() const
Get the target charge number.
const char * p
Definition: xmltok.h:285
tuple x
Definition: test.py:50
void finalizeGlobalInfo()
int G4int
Definition: G4Types.hh:78
Class containing default actions to be performed at intermediate cascade steps.
Char_t n[5]
UnorderedVector< Particle * > ParticleList
INCL(Config const *const config)
Simple container for output of calculation-wide results.
Simple container for output of event results.
Float_t Z
Definition: plot.C:39
bool G4bool
Definition: G4Types.hh:79
G4int getTargetA() const
Get the target mass number.
const EventInfo & processEvent()
G4bool initializeTarget(const G4int A, const G4int Z)
ParticleSpecies getProjectileSpecies() const
Get the projectile species.
G4ThreadLocal NuclearMassFn getTableMass
Static pointer to the mass function for nuclei.
RootFunctor(const G4double x0, const G4double x1)
ProjectileRemnant * getProjectileRemnant() const
Get the projectile remnant.
double G4double
Definition: G4Types.hh:76
G4double getProjectileKineticEnergy() const
Get the projectile kinetic energy.
ParticleList::const_iterator ParticleIter
Static root-finder algorithm.