Geant4_10
G4ErrorSymMatrix.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4ErrorSymMatrix.hh 66892 2013-01-17 10:57:59Z gunter $
27 //
28 // Class Description:
29 //
30 // Simplified version of CLHEP HepSymMatrix class.
31 
32 // History:
33 // - Imported from CLHEP and modified: P. Arce May 2007
34 // --------------------------------------------------------------------
35 
36 #ifndef G4ErrorSymMatrix_hh
37 #define G4ErrorSymMatrix_hh
38 
39 #include <vector>
40 
41 class G4ErrorMatrix;
42 
44 {
45  public: //with description
46 
47  inline G4ErrorSymMatrix();
48  // Default constructor. Gives 0x0 symmetric matrix.
49  // Another G4ErrorSymMatrix can be assigned to it.
50 
51  explicit G4ErrorSymMatrix(G4int p);
53  // Constructor. Gives p x p symmetric matrix.
54  // With a second argument, the matrix is initialized. 0 means a zero
55  // matrix, 1 means the identity matrix.
56 
58  // Copy constructor.
59 
60  // Constructor from DiagMatrix
61 
62  virtual ~G4ErrorSymMatrix();
63  // Destructor.
64 
65  inline G4int num_row() const;
66  inline G4int num_col() const;
67  // Returns number of rows/columns.
68 
69  const G4double & operator()(G4int row, G4int col) const;
70  G4double & operator()(G4int row, G4int col);
71  // Read and write a G4ErrorSymMatrix element.
72  // ** Note that indexing starts from (1,1). **
73 
74  const G4double & fast(G4int row, G4int col) const;
75  G4double & fast(G4int row, G4int col);
76  // fast element access.
77  // Must be row>=col;
78  // ** Note that indexing starts from (1,1). **
79 
80  void assign(const G4ErrorMatrix &m2);
81  // Assigns m2 to s, assuming m2 is a symmetric matrix.
82 
83  void assign(const G4ErrorSymMatrix &m2);
84  // Another form of assignment. For consistency.
85 
87  // Multiply a G4ErrorSymMatrix by a floating number.
88 
90  // Divide a G4ErrorSymMatrix by a floating number.
91 
94  // Add or subtract a G4ErrorSymMatrix.
95 
97  // Assignment operators. Notice that there is no G4ErrorSymMatrix = Matrix.
98 
100  // unary minus, ie. flip the sign of each element.
101 
102  G4ErrorSymMatrix T() const;
103  // Returns the transpose of a G4ErrorSymMatrix (which is itself).
104 
106  // Apply a function to all elements of the matrix.
107 
108  G4ErrorSymMatrix similarity(const G4ErrorMatrix &m1) const;
110  // Returns m1*s*m1.T().
111 
112  G4ErrorSymMatrix similarityT(const G4ErrorMatrix &m1) const;
113  // temporary. test of new similarity.
114  // Returns m1.T()*s*m1.
115 
116  G4ErrorSymMatrix sub(G4int min_row, G4int max_row) const;
117  // Returns a sub matrix of a G4ErrorSymMatrix.
118 
119  void sub(G4int row, const G4ErrorSymMatrix &m1);
120  // Sub matrix of this G4ErrorSymMatrix is replaced with m1.
121 
122  G4ErrorSymMatrix sub(G4int min_row, G4int max_row);
123  // SGI CC bug. I have to have both with/without const. I should not need
124  // one without const.
125 
126  inline G4ErrorSymMatrix inverse(G4int &ifail) const;
127  // Invert a Matrix. The matrix is not changed
128  // Returns 0 when successful, otherwise non-zero.
129 
130  void invert(G4int &ifail);
131  // Invert a Matrix.
132  // N.B. the contents of the matrix are replaced by the inverse.
133  // Returns ierr = 0 when successful, otherwise non-zero.
134  // This method has less overhead then inverse().
135 
136  G4double determinant() const;
137  // calculate the determinant of the matrix.
138 
139  G4double trace() const;
140  // calculate the trace of the matrix (sum of diagonal elements).
141 
143  {
144  public:
146  inline G4double & operator[](G4int);
147  private:
148  G4ErrorSymMatrix& _a;
149  G4int _r;
150  };
152  {
153  public:
155  inline const G4double & operator[](G4int) const;
156  private:
157  const G4ErrorSymMatrix& _a;
158  G4int _r;
159  };
160  // helper class to implement m[i][j]
161 
164  // Read or write a matrix element.
165  // While it may not look like it, you simply do m[i][j] to get an
166  // element.
167  // ** Note that the indexing starts from [0][0]. **
168 
169  // Special-case inversions for 5x5 and 6x6 symmetric positive definite:
170  // These set ifail=0 and invert if the matrix was positive definite;
171  // otherwise ifail=1 and the matrix is left unaltered.
172 
173  void invertCholesky5 (G4int &ifail);
174  void invertCholesky6 (G4int &ifail);
175 
176  // Inversions for 5x5 and 6x6 forcing use of specific methods: The
177  // behavior (though not the speed) will be identical to invert(ifail).
178 
179  void invertHaywood4 (G4int & ifail);
180  void invertHaywood5 (G4int &ifail);
181  void invertHaywood6 (G4int &ifail);
182  void invertBunchKaufman (G4int &ifail);
183 
184  protected:
185 
186  inline G4int num_size() const;
187 
188  private:
189 
190  friend class G4ErrorSymMatrix_row;
192  friend class G4ErrorMatrix;
193 
194  friend void tridiagonal(G4ErrorSymMatrix *a, G4ErrorMatrix *hsm);
195  friend G4double condition(const G4ErrorSymMatrix &m);
196  friend void diag_step(G4ErrorSymMatrix *t, G4int begin, G4int end);
197  friend void diag_step(G4ErrorSymMatrix *t, G4ErrorMatrix *u,
198  G4int begin, G4int end);
201  G4int row, G4int col);
202 
203  friend G4ErrorSymMatrix operator+(const G4ErrorSymMatrix &m1,
204  const G4ErrorSymMatrix &m2);
205  friend G4ErrorSymMatrix operator-(const G4ErrorSymMatrix &m1,
206  const G4ErrorSymMatrix &m2);
207  friend G4ErrorMatrix operator*(const G4ErrorSymMatrix &m1,
208  const G4ErrorSymMatrix &m2);
209  friend G4ErrorMatrix operator*(const G4ErrorSymMatrix &m1,
210  const G4ErrorMatrix &m2);
211  friend G4ErrorMatrix operator*(const G4ErrorMatrix &m1,
212  const G4ErrorSymMatrix &m2);
213  // Multiply a Matrix by a Matrix or Vector.
214 
215  // Returns v * v.T();
216 
217  std::vector<G4double > m;
218 
219  G4int nrow;
220  G4int size; // total number of elements
221 
222  static G4ThreadLocal G4double posDefFraction5x5;
223  static G4ThreadLocal G4double adjustment5x5;
224  static const G4double CHOLESKY_THRESHOLD_5x5;
225  static const G4double CHOLESKY_CREEP_5x5;
226 
227  static G4ThreadLocal G4double posDefFraction6x6;
228  static G4ThreadLocal G4double adjustment6x6;
229  static const G4double CHOLESKY_THRESHOLD_6x6;
230  static const G4double CHOLESKY_CREEP_6x6;
231 
232  void invert4 (G4int & ifail);
233  void invert5 (G4int & ifail);
234  void invert6 (G4int & ifail);
235 };
236 
237 //
238 // Operations other than member functions for Matrix, G4ErrorSymMatrix,
239 // DiagMatrix and Vectors
240 //
241 
242 std::ostream& operator<<(std::ostream &s, const G4ErrorSymMatrix &q);
243 // Write out Matrix, G4ErrorSymMatrix, DiagMatrix and Vector into ostream.
244 
246  const G4ErrorSymMatrix &m2);
248  const G4ErrorMatrix &m2);
250  const G4ErrorSymMatrix &m2);
253 // Multiplication operators.
254 // Note that m *= m1 is always faster than m = m * m1
255 
257 // s = s1 / t. (s /= t is faster if you can use it.)
258 
260  const G4ErrorSymMatrix &s2);
262  const G4ErrorMatrix &m2);
264  const G4ErrorSymMatrix &s2);
265 // Addition operators
266 
268  const G4ErrorSymMatrix &s2);
270  const G4ErrorMatrix &m2);
272  const G4ErrorSymMatrix &s2);
273 // subtraction operators
274 
276  const G4ErrorSymMatrix &s2);
277 // Direct sum of two symmetric matrices;
278 
280 // Find the conditon number of a symmetric matrix.
281 
282 void diag_step(G4ErrorSymMatrix *t, G4int begin, G4int end);
283 void diag_step(G4ErrorSymMatrix *t, G4ErrorMatrix *u, G4int begin, G4int end);
284 // Implicit symmetric QR step with Wilkinson Shift
285 
287 // Diagonalize a symmetric matrix.
288 // It returns the matrix U so that s_old = U * s_diag * U.T()
289 
291  G4int row=1, G4int col=1);
292 // Finds and does Householder reflection on matrix.
293 
296 // Does a Householder tridiagonalization of a symmetric matrix.
297 
298 #include "G4ErrorSymMatrix.icc"
299 
300 #endif
G4double condition(const G4ErrorSymMatrix &m)
friend void house_with_update2(G4ErrorSymMatrix *a, G4ErrorMatrix *v, G4int row, G4int col)
G4ErrorMatrix dsum(const G4ErrorMatrix &, const G4ErrorMatrix &)
friend void tridiagonal(G4ErrorSymMatrix *a, G4ErrorMatrix *hsm)
tuple a
Definition: test.py:11
G4ErrorSymMatrix similarity(const G4ErrorMatrix &m1) const
const G4double & operator[](G4int) const
const XML_Char * s
Definition: expat.h:262
G4ErrorSymMatrix apply(G4double(*f)(G4double, G4int, G4int)) const
G4ErrorSymMatrix & operator=(const G4ErrorSymMatrix &m2)
const char * p
Definition: xmltok.h:285
G4int num_col() const
BasicVector3D< float > operator-(const BasicVector3D< float > &v)
BasicVector3D< float > operator+(const BasicVector3D< float > &v)
G4ErrorSymMatrix sub(G4int min_row, G4int max_row) const
G4ErrorSymMatrix T() const
void invertHaywood6(G4int &ifail)
void invertBunchKaufman(G4int &ifail)
friend G4ErrorMatrix operator*(const G4ErrorSymMatrix &m1, const G4ErrorSymMatrix &m2)
const G4double & fast(G4int row, G4int col) const
#define G4ThreadLocal
Definition: tls.hh:52
void diag_step(G4ErrorSymMatrix *t, G4int begin, G4int end)
void invertHaywood5(G4int &ifail)
G4ErrorSymMatrix & operator-=(const G4ErrorSymMatrix &m2)
int G4int
Definition: G4Types.hh:78
friend G4ErrorMatrix diagonalize(G4ErrorSymMatrix *s)
G4int num_size() const
void house_with_update2(G4ErrorSymMatrix *a, G4ErrorMatrix *v, G4int row=1, G4int col=1)
TFile f
Definition: plotHisto.C:6
void invert(G4int &ifail)
const G4double & operator()(G4int row, G4int col) const
void invertCholesky6(G4int &ifail)
void tridiagonal(G4ErrorSymMatrix *a, G4ErrorMatrix *hsm)
Int_t col[ntarg]
Definition: Style.C:29
G4ErrorSymMatrix_row operator[](G4int)
G4int num_row() const
G4ErrorSymMatrix & operator/=(G4double t)
G4ErrorSymMatrix operator-() const
G4ErrorSymMatrix inverse(G4int &ifail) const
friend G4double condition(const G4ErrorSymMatrix &m)
friend void diag_step(G4ErrorSymMatrix *t, G4int begin, G4int end)
G4ErrorSymMatrix_row_const(const G4ErrorSymMatrix &, G4int)
tuple v
Definition: test.py:18
G4ErrorSymMatrix & operator+=(const G4ErrorSymMatrix &m2)
void invertHaywood4(G4int &ifail)
G4ErrorMatrix diagonalize(G4ErrorSymMatrix *s)
std::ostream & operator<<(std::ostream &, const BasicVector3D< float > &)
BasicVector3D< float > operator*(const BasicVector3D< float > &v, double a)
BasicVector3D< float > operator/(const BasicVector3D< float > &v, double a)
virtual ~G4ErrorSymMatrix()
double G4double
Definition: G4Types.hh:76
G4ErrorSymMatrix similarityT(const G4ErrorMatrix &m1) const
G4ErrorSymMatrix & operator*=(G4double t)
friend G4ErrorSymMatrix operator+(const G4ErrorSymMatrix &m1, const G4ErrorSymMatrix &m2)
G4double determinant() const
void invertCholesky5(G4int &ifail)
void assign(const G4ErrorMatrix &m2)
G4ErrorSymMatrix_row(G4ErrorSymMatrix &, G4int)
G4double trace() const