Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
RotationX.cc
Go to the documentation of this file.
1 // -*- C++ -*-
2 // ---------------------------------------------------------------------------
3 //
4 // This file is a part of the CLHEP - a Class Library for High Energy Physics.
5 //
6 // This is the implementation of methods of the HepRotationX class which
7 // were introduced when ZOOM PhysicsVectors was merged in.
8 //
9 
10 #ifdef GNUPRAGMA
11 #pragma implementation
12 #endif
13 
14 #include "CLHEP/Vector/RotationX.h"
15 #include "CLHEP/Vector/AxisAngle.h"
19 
20 #include <cmath>
21 #include <stdlib.h>
22 #include <iostream>
23 
24 namespace CLHEP {
25 
26 static inline double safe_acos (double x) {
27  if (std::abs(x) <= 1.0) return std::acos(x);
28  return ( (x>0) ? 0 : CLHEP::pi );
29 }
30 
31 HepRotationX::HepRotationX(double ddelta) :
32  its_d(proper(ddelta)), its_s(std::sin(ddelta)), its_c(std::cos(ddelta))
33 {}
34 
35 HepRotationX & HepRotationX::set ( double ddelta ) {
36  its_d = proper(ddelta);
37  its_s = std::sin(its_d);
38  its_c = std::cos(its_d);
39  return *this;
40 }
41 
42 double HepRotationX::phi() const {
43  if ( (its_d > 0) && (its_d < CLHEP::pi) ) {
44  return CLHEP::pi;
45  } else {
46  return 0.0;
47  }
48 } // HepRotationX::phi()
49 
50 double HepRotationX::theta() const {
51  return std::fabs( its_d );
52 } // HepRotationX::theta()
53 
54 double HepRotationX::psi() const {
55  if ( (its_d > 0) && (its_d < CLHEP::pi) ) {
56  return CLHEP::pi;
57  } else {
58  return 0.0;
59  }
60 } // HepRotationX::psi()
61 
63  return HepEulerAngles( phi(), theta(), psi() );
64 } // HepRotationX::eulerAngles()
65 
66 
67 // From the defining code in the implementation of CLHEP (in Rotation.cc)
68 // it is clear that thetaX, phiX form the polar angles in the original
69 // coordinate system of the new X axis (and similarly for phiY and phiZ).
70 //
71 // This code is taken directly from the original CLHEP. However, there are as
72 // shown opportunities for significant speed improvement.
73 
74 double HepRotationX::phiX() const {
75  return (yx() == 0.0 && xx() == 0.0) ? 0.0 : std::atan2(yx(),xx());
76  // or ---- return 0;
77 }
78 
79 double HepRotationX::phiY() const {
80  return (yy() == 0.0 && xy() == 0.0) ? 0.0 : std::atan2(yy(),xy());
81  // or ---- return (yy() == 0.0) ? 0.0 : std::atan2(yy(),xy());
82 }
83 
84 double HepRotationX::phiZ() const {
85  return (yz() == 0.0 && xz() == 0.0) ? 0.0 : std::atan2(yz(),xz());
86  // or ---- return (yz() == 0.0) ? 0.0 : std::atan2(yz(),xz());
87 }
88 
89 double HepRotationX::thetaX() const {
90  return safe_acos(zx());
91  // or ---- return CLHEP::halfpi;
92 }
93 
94 double HepRotationX::thetaY() const {
95  return safe_acos(zy());
96 }
97 
98 double HepRotationX::thetaZ() const {
99  return safe_acos(zz());
100  // or ---- return d;
101 }
102 
103 void HepRotationX::setDelta ( double ddelta ) {
104  set(ddelta);
105 }
106 
108  (HepAxisAngle & rotation, Hep3Vector & boost) const {
109  boost.set(0,0,0);
110  rotation = axisAngle();
111 }
112 
114  (Hep3Vector & boost, HepAxisAngle & rotation) const {
115  boost.set(0,0,0);
116  rotation = axisAngle();
117 }
118 
120  (HepRotation & rotation, HepBoost & boost) const {
121  boost.set(0,0,0);
122  rotation = HepRotation(*this);
123 }
124 
126  (HepBoost & boost, HepRotation & rotation) const {
127  boost.set(0,0,0);
128  rotation = HepRotation(*this);
129 }
130 
131 double HepRotationX::distance2( const HepRotationX & r ) const {
132  double answer = 2.0 * ( 1.0 - ( its_s * r.its_s + its_c * r.its_c ) ) ;
133  return (answer >= 0) ? answer : 0;
134 }
135 
136 double HepRotationX::distance2( const HepRotation & r ) const {
137  double sum = r.xx() +
138  yy() * r.yy() + yz() * r.yz()
139  + zy() * r.zy() + zz() * r.zz();
140  double answer = 3.0 - sum;
141  return (answer >= 0 ) ? answer : 0;
142 }
143 
144 double HepRotationX::distance2( const HepLorentzRotation & lt ) const {
145  HepAxisAngle a;
146  Hep3Vector b;
147  lt.decompose(b, a);
148  double bet = b.beta();
149  double bet2 = bet*bet;
150  HepRotation r(a);
151  return bet2/(1-bet2) + distance2(r);
152 }
153 
154 double HepRotationX::distance2( const HepBoost & lt ) const {
155  return distance2( HepLorentzRotation(lt));
156 }
157 
158 double HepRotationX::howNear( const HepRotationX & r ) const {
159  return std::sqrt(distance2(r));
160 }
161 double HepRotationX::howNear( const HepRotation & r ) const {
162  return std::sqrt(distance2(r));
163 }
164 double HepRotationX::howNear( const HepBoost & b ) const {
165  return std::sqrt(distance2(b));
166 }
167 double HepRotationX::howNear( const HepLorentzRotation & lt ) const {
168  return std::sqrt(distance2(lt));
169 }
170 bool HepRotationX::isNear(const HepRotationX & r,double epsilon)const{
171  return (distance2(r) <= epsilon*epsilon);
172 }
173 bool HepRotationX::isNear(const HepRotation & r,double epsilon) const{
174  return (distance2(r) <= epsilon*epsilon);
175 }
176 bool HepRotationX::isNear( const HepBoost & lt,double epsilon) const {
177  return (distance2(lt) <= epsilon*epsilon);
178 }
179 
181  double epsilon ) const {
182  return (distance2(lt) <= epsilon*epsilon);
183 }
184 
185 double HepRotationX::norm2() const {
186  return 2.0 - 2.0 * its_c;
187 }
188 
189 std::ostream & HepRotationX::print( std::ostream & os ) const {
190  os << "\nRotation about X (" << its_d <<
191  ") [cos d = " << its_c << " sin d = " << its_s << "]\n";
192  return os;
193 }
194 
195 } // namespace CLHEP
196