Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4WentzelVIRelModel.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4WentzelVIRelModel.cc 66596 2012-12-23 14:57:45Z vnivanch $
27 //
28 // -------------------------------------------------------------------
29 //
30 // GEANT4 Class file
31 //
32 //
33 // File name: G4WentzelVIRelModel
34 //
35 // Author: V.Ivanchenko
36 //
37 // Creation date: 08.06.2012 from G4WentzelVIRelModel
38 //
39 // Modifications:
40 //
41 // Class Description:
42 //
43 // Implementation of the model of multiple scattering based on
44 // G.Wentzel, Z. Phys. 40 (1927) 590.
45 // H.W.Lewis, Phys Rev 78 (1950) 526.
46 // J.M. Fernandez-Varea et al., NIM B73 (1993) 447.
47 // L.Urban, CERN-OPEN-2006-077.
48 
49 // -------------------------------------------------------------------
50 //
51 
52 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
53 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
54 
55 #include "G4WentzelVIRelModel.hh"
56 #include "G4PhysicalConstants.hh"
57 #include "G4SystemOfUnits.hh"
58 #include "Randomize.hh"
60 #include "G4PhysicsTableHelper.hh"
61 #include "G4ElementVector.hh"
62 #include "G4ProductionCutsTable.hh"
63 #include "G4LossTableManager.hh"
64 #include "G4Pow.hh"
65 #include "G4NistManager.hh"
66 
67 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
68 
69 using namespace std;
70 
72  G4VMscModel(nam),
73  numlimit(0.1),
74  currentCouple(0),
75  cosThetaMin(1.0),
76  inside(false),
77  singleScatteringMode(false)
78 {
79  invsqrt12 = 1./sqrt(12.);
80  tlimitminfix = 1.e-6*mm;
81  lowEnergyLimit = 1.0*eV;
82  particle = 0;
83  nelments = 5;
84  xsecn.resize(nelments);
85  prob.resize(nelments);
86  theManager = G4LossTableManager::Instance();
87  fNistManager = G4NistManager::Instance();
88  fG4pow = G4Pow::GetInstance();
89  wokvi = new G4WentzelVIRelXSection();
90 
91  preKinEnergy = tPathLength = zPathLength = lambdaeff = currentRange = xtsec = 0;
92  currentMaterialIndex = 0;
93  cosThetaMax = cosTetMaxNuc = 1.0;
94 
95  fParticleChange = 0;
96  currentCuts = 0;
97  currentMaterial = 0;
98 }
99 
100 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
101 
103 {
104  delete wokvi;
105 }
106 
107 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
108 
110  const G4DataVector& cuts)
111 {
112  // reset parameters
113  SetupParticle(p);
114  currentRange = 0.0;
115 
116  cosThetaMax = cos(PolarAngleLimit());
117  wokvi->Initialise(p, cosThetaMax);
118  /*
119  G4cout << "G4WentzelVIRelModel: " << particle->GetParticleName()
120  << " 1-cos(ThetaLimit)= " << 1 - cosThetaMax
121  << G4endl;
122  */
123  currentCuts = &cuts;
124 
125  // set values of some data members
126  fParticleChange = GetParticleChangeForMSC(p);
127 }
128 
129 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
130 
132  const G4ParticleDefinition* p,
133  G4double kinEnergy,
135  G4double cutEnergy, G4double)
136 {
137  G4double cross = 0.0;
138  if(p != particle) { SetupParticle(p); }
139  if(kinEnergy < lowEnergyLimit) { return cross; }
140  if(!CurrentCouple()) {
141  G4Exception("G4WentzelVIRelModel::ComputeCrossSectionPerAtom", "em0011",
142  FatalException, " G4MaterialCutsCouple is not defined");
143  return 0.0;
144  }
145  DefineMaterial(CurrentCouple());
146  cosTetMaxNuc = wokvi->SetupKinematic(kinEnergy, currentMaterial);
147  if(cosTetMaxNuc < 1.0) {
148  cosTetMaxNuc = wokvi->SetupTarget(G4lrint(Z), cutEnergy);
149  cross = wokvi->ComputeTransportCrossSectionPerAtom(cosTetMaxNuc);
150  /*
151  if(p->GetParticleName() == "e-")
152  G4cout << "G4WentzelVIRelModel::CS: Z= " << G4int(Z) << " e(MeV)= " << kinEnergy
153  << " 1-cosN= " << 1 - cosTetMaxNuc << " cross(bn)= " << cross/barn
154  << " " << particle->GetParticleName() << G4endl;
155  */
156  }
157  return cross;
158 }
159 
160 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
161 
163 {
164  SetupParticle(track->GetDynamicParticle()->GetDefinition());
165  inside = false;
166 }
167 
168 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
169 
171  const G4Track& track,
172  G4double& currentMinimalStep)
173 {
174  G4double tlimit = currentMinimalStep;
175  const G4DynamicParticle* dp = track.GetDynamicParticle();
176  G4StepPoint* sp = track.GetStep()->GetPreStepPoint();
177  G4StepStatus stepStatus = sp->GetStepStatus();
178  singleScatteringMode = false;
179  //G4cout << "G4WentzelVIRelModel::ComputeTruePathLengthLimit stepStatus= "
180  // << stepStatus << G4endl;
181 
182 
183  // initialisation for each step, lambda may be computed from scratch
184  preKinEnergy = dp->GetKineticEnergy();
185  DefineMaterial(track.GetMaterialCutsCouple());
186  lambdaeff = GetTransportMeanFreePath(particle,preKinEnergy);
187  currentRange = GetRange(particle,preKinEnergy,currentCouple);
188  cosTetMaxNuc = wokvi->SetupKinematic(preKinEnergy, currentMaterial);
189 
190  // extra check for abnormal situation
191  // this check needed to run MSC with eIoni and eBrem inactivated
192  if(tlimit > currentRange) { tlimit = currentRange; }
193 
194  // stop here if small range particle
195  if(inside || tlimit < tlimitminfix) {
196  return ConvertTrueToGeom(tlimit, currentMinimalStep);
197  }
198 
199  // pre step
200  G4double presafety = sp->GetSafety();
201  // far from geometry boundary
202  if(currentRange < presafety) {
203  inside = true;
204  return ConvertTrueToGeom(tlimit, currentMinimalStep);
205  }
206 
207  // compute presafety again if presafety <= 0 and no boundary
208  // i.e. when it is needed for optimization purposes
209  if(stepStatus != fGeomBoundary && presafety < tlimitminfix) {
210  presafety = ComputeSafety(sp->GetPosition(), tlimit);
211  if(currentRange < presafety) {
212  inside = true;
213  return ConvertTrueToGeom(tlimit, currentMinimalStep);
214  }
215  }
216  /*
217  G4cout << "e(MeV)= " << preKinEnergy/MeV
218  << " " << particle->GetParticleName()
219  << " CurLimit(mm)= " << tlimit/mm <<" safety(mm)= " << presafety/mm
220  << " R(mm)= " <<currentRange/mm
221  << " L0(mm^-1)= " << lambdaeff*mm
222  <<G4endl;
223  */
224 
225  // natural limit for high energy
226  G4double rlimit = std::max(facrange*currentRange,
227  0.7*(1.0 - cosTetMaxNuc)*lambdaeff);
228 
229  // low-energy e-
230  if(cosThetaMax > cosTetMaxNuc) {
231  rlimit = std::min(rlimit, facsafety*presafety);
232  }
233 
234  // cut correction
235  G4double rcut = currentCouple->GetProductionCuts()->GetProductionCut(1);
236  //G4cout << "rcut= " << rcut << " rlimit= " << rlimit << " presafety= " << presafety
237  // << " 1-cosThetaMax= " <<1-cosThetaMax << " 1-cosTetMaxNuc= " << 1-cosTetMaxNuc
238  // << G4endl;
239  if(rcut > rlimit) { rlimit = std::min(rlimit, rcut*sqrt(rlimit/rcut)); }
240 
241  if(rlimit < tlimit) { tlimit = rlimit; }
242 
243  tlimit = std::max(tlimit, tlimitminfix);
244 
245  // step limit in infinite media
246  tlimit = std::min(tlimit, 50*currentMaterial->GetRadlen()/facgeom);
247 
248  //compute geomlimit and force few steps within a volume
250  {
251  G4double geomlimit = ComputeGeomLimit(track, presafety, currentRange);
252  tlimit = std::min(tlimit, geomlimit/facgeom);
253  }
254 
255  /*
256  G4cout << particle->GetParticleName() << " e= " << preKinEnergy
257  << " L0= " << lambdaeff << " R= " << currentRange
258  << "tlimit= " << tlimit
259  << " currentMinimalStep= " << currentMinimalStep << G4endl;
260  */
261  return ConvertTrueToGeom(tlimit, currentMinimalStep);
262 }
263 
264 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
265 
267 {
268  tPathLength = truelength;
269  zPathLength = tPathLength;
270 
271  if(lambdaeff > 0.0 && lambdaeff != DBL_MAX) {
272  G4double tau = tPathLength/lambdaeff;
273  //G4cout << "ComputeGeomPathLength: tLength= " << tPathLength
274  // << " Leff= " << lambdaeff << " tau= " << tau << G4endl;
275  // small step
276  if(tau < numlimit) {
277  zPathLength *= (1.0 - 0.5*tau + tau*tau/6.0);
278 
279  // medium step
280  } else {
281  G4double e1 = 0.0;
282  if(currentRange > tPathLength) {
283  e1 = GetEnergy(particle,currentRange-tPathLength,currentCouple);
284  }
285  e1 = 0.5*(e1 + preKinEnergy);
286  cosTetMaxNuc = wokvi->SetupKinematic(e1, currentMaterial);
287  lambdaeff = GetTransportMeanFreePath(particle,e1);
288  zPathLength = lambdaeff*(1.0 - exp(-tPathLength/lambdaeff));
289  }
290  } else { lambdaeff = DBL_MAX; }
291  //G4cout<<"Comp.geom: zLength= "<<zPathLength<<" tLength= "<<tPathLength<<G4endl;
292  return zPathLength;
293 }
294 
295 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
296 
298 {
299  // initialisation of single scattering x-section
300  xtsec = 0.0;
301  cosThetaMin = cosTetMaxNuc;
302 
303  //G4cout << "Step= " << geomStepLength << " Lambda= " << lambdaeff
304  // << " 1-cosThetaMaxNuc= " << 1 - cosTetMaxNuc << G4endl;
305  // pathalogical case
306  if(lambdaeff == DBL_MAX) {
307  singleScatteringMode = true;
308  zPathLength = geomStepLength;
309  tPathLength = geomStepLength;
310  cosThetaMin = 1.0;
311 
312  // normal case
313  } else {
314 
315  // small step use only single scattering
316  const G4double singleScatLimit = 1.0e-7;
317  if(geomStepLength < lambdaeff*singleScatLimit*(1.0 - cosTetMaxNuc)) {
318  singleScatteringMode = true;
319  cosThetaMin = 1.0;
320  zPathLength = geomStepLength;
321  tPathLength = geomStepLength;
322 
323  // step defined by transportation
324  } else if(geomStepLength != zPathLength) {
325 
326  // step defined by transportation
327  zPathLength = geomStepLength;
328  G4double tau = geomStepLength/lambdaeff;
329  tPathLength = zPathLength*(1.0 + 0.5*tau + tau*tau/3.0);
330 
331  // energy correction for a big step
332  if(tau > numlimit) {
333  G4double e1 = 0.0;
334  if(currentRange > tPathLength) {
335  e1 = GetEnergy(particle,currentRange-tPathLength,currentCouple);
336  }
337  e1 = 0.5*(e1 + preKinEnergy);
338  cosTetMaxNuc = wokvi->SetupKinematic(e1, currentMaterial);
339  lambdaeff = GetTransportMeanFreePath(particle,e1);
340  tau = zPathLength/lambdaeff;
341 
342  if(tau < 0.999999) { tPathLength = -lambdaeff*log(1.0 - tau); }
343  else { tPathLength = currentRange; }
344  }
345  }
346  }
347 
348  // check of step length
349  // define threshold angle between single and multiple scattering
350  if(!singleScatteringMode) { cosThetaMin = 1.0 - 1.5*tPathLength/lambdaeff; }
351 
352  // recompute transport cross section - do not change energy
353  // anymore - cannot be applied for big steps
354  if(cosThetaMin > cosTetMaxNuc) {
355 
356  // new computation
357  G4double cross = ComputeXSectionPerVolume();
358  //G4cout << "%%%% cross= " << cross << " xtsec= " << xtsec << G4endl;
359  if(cross <= 0.0) {
360  singleScatteringMode = true;
361  tPathLength = zPathLength;
362  lambdaeff = DBL_MAX;
363  } else if(xtsec > 0.0) {
364 
365  lambdaeff = 1./cross;
366  G4double tau = zPathLength*cross;
367  if(tau < numlimit) { tPathLength = zPathLength*(1.0 + 0.5*tau + tau*tau/3.0); }
368  else if(tau < 0.999999) { tPathLength = -lambdaeff*log(1.0 - tau); }
369  else { tPathLength = currentRange; }
370 
371  if(tPathLength > currentRange) { tPathLength = currentRange; }
372  }
373  }
374 
375  /*
376  G4cout <<"Comp.true: zLength= "<<zPathLength<<" tLength= "<<tPathLength
377  <<" Leff(mm)= "<<lambdaeff/mm<<" sig0(1/mm)= " << xtsec <<G4endl;
378  G4cout << particle->GetParticleName() << " 1-cosThetaMin= " << 1-cosThetaMin
379  << " 1-cosTetMaxNuc= " << 1-cosTetMaxNuc
380  << " e(MeV)= " << preKinEnergy/MeV << " " << singleScatteringMode << G4endl;
381  */
382  return tPathLength;
383 }
384 
385 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
386 
389  G4double safety)
390 {
391  fDisplacement.set(0.0,0.0,0.0);
392  //G4cout << "!##! G4WentzelVIRelModel::SampleScattering for "
393  // << particle->GetParticleName() << G4endl;
394 
395  // ignore scattering for zero step length and energy below the limit
396  if(preKinEnergy < lowEnergyLimit || tPathLength <= 0.0)
397  { return fDisplacement; }
398 
399  G4double invlambda = 0.0;
400  if(lambdaeff < DBL_MAX) { invlambda = 0.5/lambdaeff; }
401 
402  // use average kinetic energy over the step
403  G4double cut = (*currentCuts)[currentMaterialIndex];
404  /*
405  G4cout <<"SampleScat: E0(MeV)= "<< preKinEnergy/MeV
406  << " Leff= " << lambdaeff <<" sig0(1/mm)= " << xtsec
407  << " xmsc= " << tPathLength*invlambda << " safety= " << safety << G4endl;
408  */
409 
410  // step limit due msc
411  G4double x0 = tPathLength;
412  // const G4double thinlimit = 0.5;
413  const G4double thinlimit = 0.1;
414  G4int nMscSteps = 1;
415  // large scattering angle case - two step approach
416  if(tPathLength*invlambda > thinlimit && safety > tlimitminfix) {
417  x0 *= 0.5;
418  nMscSteps = 2;
419  }
420 
421  // step limit due to single scattering
422  G4double x1 = 2*tPathLength;
423  if(0.0 < xtsec) { x1 = -log(G4UniformRand())/xtsec; }
424 
425  const G4ElementVector* theElementVector =
426  currentMaterial->GetElementVector();
427  G4int nelm = currentMaterial->GetNumberOfElements();
428 
429  // geometry
430  G4double sint, cost, phi;
431  G4ThreeVector temp(0.0,0.0,1.0);
432 
433  // current position and direction relative to the end point
434  // because of magnetic field geometry is computed relatively to the
435  // end point of the step
436  G4ThreeVector dir(0.0,0.0,1.0);
437  fDisplacement.set(0.0,0.0,-zPathLength);
438  G4double mscfac = zPathLength/tPathLength;
439 
440  // start a loop
441  G4double x2 = x0;
442  G4double step, z;
443  G4bool singleScat;
444  /*
445  G4cout << "Start of the loop x1(mm)= " << x1 << " x2(mm)= " << x2
446  << " 1-cost1= " << 1 - cosThetaMin << " " << singleScatteringMode
447  << " xtsec= " << xtsec << G4endl;
448  */
449  do {
450 
451  // single scattering case
452  if(x1 < x2) {
453  step = x1;
454  singleScat = true;
455  } else {
456  step = x2;
457  singleScat = false;
458  }
459 
460  // new position
461  fDisplacement += step*mscfac*dir;
462 
463  if(singleScat) {
464 
465  // select element
466  G4int i = 0;
467  if(nelm > 1) {
468  G4double qsec = G4UniformRand()*xtsec;
469  for (; i<nelm; ++i) { if(xsecn[i] >= qsec) { break; } }
470  }
471  G4double cosTetM =
472  wokvi->SetupTarget(G4lrint((*theElementVector)[i]->GetZ()), cut);
473  //G4cout << "!!! " << cosThetaMin << " " << cosTetM << " " << prob[i] << G4endl;
474  temp = wokvi->SampleSingleScattering(cosThetaMin, cosTetM, prob[i]);
475 
476  // direction is changed
477  temp.rotateUz(dir);
478  dir = temp;
479 
480  // new proposed step length
481  x1 = -log(G4UniformRand())/xtsec;
482  x2 -= step;
483  if(x2 <= 0.0) { --nMscSteps; }
484 
485  // multiple scattering
486  } else {
487  --nMscSteps;
488  x1 -= step;
489  x2 = x0;
490 
491  // for multiple scattering x0 should be used as a step size
492  if(!singleScatteringMode) {
493  G4double z0 = x0*invlambda;
494 
495  // correction to keep first moment
496 
497  // sample z in interval 0 - 1
498  if(z0 > 5.0) { z = G4UniformRand(); }
499  else {
500  G4double zzz = 0.0;
501  if(z0 > 0.01) { zzz = exp(-1.0/z0); }
502  z = -z0*log(1.0 - (1.0 - zzz)*G4UniformRand());
503  // /(1.0 - (1.0/z0 + 1.0)*zzz);
504  }
505 
506  cost = 1.0 - 2.0*z/*factCM*/;
507  if(cost > 1.0) { cost = 1.0; }
508  else if(cost < -1.0) { cost =-1.0; }
509  sint = sqrt((1.0 - cost)*(1.0 + cost));
510  phi = twopi*G4UniformRand();
511  G4double vx1 = sint*cos(phi);
512  G4double vy1 = sint*sin(phi);
513 
514  // change direction
515  temp.set(vx1,vy1,cost);
516  temp.rotateUz(dir);
517  dir = temp;
518 
519  // lateral displacement
520  if (latDisplasment && x0 > tlimitminfix) {
521  G4double rms = invsqrt12*sqrt(2*z0);
522  G4double r = x0*mscfac;
523  G4double dx = r*(0.5*vx1 + rms*G4RandGauss::shoot(0.0,1.0));
524  G4double dy = r*(0.5*vy1 + rms*G4RandGauss::shoot(0.0,1.0));
525  G4double dz;
526  G4double d = r*r - dx*dx - dy*dy;
527  if(d >= 0.0) { dz = sqrt(d) - r; }
528  else { dx = dy = dz = 0.0; }
529 
530  // change position
531  temp.set(dx,dy,dz);
532  temp.rotateUz(dir);
533  fDisplacement += temp;
534  }
535  }
536  }
537  } while (0 < nMscSteps);
538 
539  dir.rotateUz(oldDirection);
540 
541  //G4cout << "G4WentzelVIRelModel sampling of scattering is done" << G4endl;
542  // end of sampling -------------------------------
543 
544  fParticleChange->ProposeMomentumDirection(dir);
545 
546  // lateral displacement
547  fDisplacement.rotateUz(oldDirection);
548 
549  /*
550  G4cout << " r(mm)= " << fDisplacement.mag()
551  << " safety= " << safety
552  << " trueStep(mm)= " << tPathLength
553  << " geomStep(mm)= " << zPathLength
554  << " x= " << fDisplacement.x()
555  << " y= " << fDisplacement.y()
556  << " z= " << fDisplacement.z()
557  << G4endl;
558  */
559 
560  //G4cout<< "G4WentzelVIRelModel::SampleScattering end NewDir= " << dir<< G4endl;
561  return fDisplacement;
562 }
563 
564 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
565 
566 G4double G4WentzelVIRelModel::ComputeXSectionPerVolume()
567 {
568  // prepare recomputation of x-sections
569  const G4ElementVector* theElementVector = currentMaterial->GetElementVector();
570  const G4double* theAtomNumDensityVector =
571  currentMaterial->GetVecNbOfAtomsPerVolume();
572  G4int nelm = currentMaterial->GetNumberOfElements();
573  if(nelm > nelments) {
574  nelments = nelm;
575  xsecn.resize(nelm);
576  prob.resize(nelm);
577  }
578  G4double cut = (*currentCuts)[currentMaterialIndex];
579  // cosTetMaxNuc = wokvi->GetCosThetaNuc();
580 
581  // check consistency
582  xtsec = 0.0;
583  if(cosTetMaxNuc > cosThetaMin) { return 0.0; }
584 
585  // loop over elements
586  G4double xs = 0.0;
587  for (G4int i=0; i<nelm; ++i) {
588  G4double costm =
589  wokvi->SetupTarget(G4lrint((*theElementVector)[i]->GetZ()), cut);
590  G4double density = theAtomNumDensityVector[i];
591 
592  G4double esec = 0.0;
593  if(costm < cosThetaMin) {
594 
595  // recompute the transport x-section
596  if(1.0 > cosThetaMin) {
597  xs += density*wokvi->ComputeTransportCrossSectionPerAtom(cosThetaMin);
598  }
599  // recompute the total x-section
600  G4double nucsec = wokvi->ComputeNuclearCrossSection(cosThetaMin, costm);
601  esec = wokvi->ComputeElectronCrossSection(cosThetaMin, costm);
602  nucsec += esec;
603  if(nucsec > 0.0) { esec /= nucsec; }
604  xtsec += nucsec*density;
605  }
606  xsecn[i] = xtsec;
607  prob[i] = esec;
608  //G4cout << i << " xs= " << xs << " xtsec= " << xtsec
609  // << " 1-cosThetaMin= " << 1-cosThetaMin
610  // << " 1-cosTetMaxNuc2= " <<1-cosTetMaxNuc2<< G4endl;
611  }
612 
613  //G4cout << "ComputeXS result: xsec(1/mm)= " << xs
614  // << " txsec(1/mm)= " << xtsec <<G4endl;
615  return xs;
616 }
617 
618 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......