Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4RKFieldIntegrator.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // G4RKFieldIntegrator
27 #include "G4RKFieldIntegrator.hh"
28 #include "G4PhysicalConstants.hh"
29 #include "G4SystemOfUnits.hh"
30 #include "G4NucleiProperties.hh"
31 #include "G4FermiMomentum.hh"
32 #include "G4NuclearFermiDensity.hh"
34 #include "G4Nucleon.hh"
35 
36 // Class G4RKFieldIntegrator
37 //*************************************************************************************************************************************
38 
39 // only theActive are propagated, nothing else
40 // only theSpectators define the field, nothing else
41 
42 void G4RKFieldIntegrator::Transport(G4KineticTrackVector &theActive, const G4KineticTrackVector &theSpectators, G4double theTimeStep)
43 {
44  (void)theActive;
45  (void)theSpectators;
46  (void)theTimeStep;
47 }
48 
49 
50 G4double G4RKFieldIntegrator::CalculateTotalEnergy(const G4KineticTrackVector& Barions)
51 {
52  const G4double Alpha = 0.25/fermi/fermi;
53  const G4double t1 = -7264.04*fermi*fermi*fermi;
54  const G4double tGamma = 87.65*fermi*fermi*fermi*fermi*fermi*fermi;
55 // const G4double Gamma = 1.676;
56  const G4double Vo = -0.498*fermi;
57  const G4double GammaY = 1.4*fermi;
58 
59  G4double Etot = 0;
60  G4int nBarion = Barions.size();
61  for(G4int c1 = 0; c1 < nBarion; c1++)
62  {
63  G4KineticTrack* p1 = Barions.operator[](c1);
64  // Ekin
65  Etot += p1->Get4Momentum().e();
66  for(G4int c2 = c1 + 1; c2 < nBarion; c2++)
67  {
68  G4KineticTrack* p2 = Barions.operator[](c2);
69  G4double r12 = (p1->GetPosition() - p2->GetPosition()).mag()*fermi;
70 
71  // Esk2
72  Etot += t1*std::pow(Alpha/pi, 3/2)*std::exp(-Alpha*r12*r12);
73 
74  // Eyuk
75  Etot += Vo*0.5/r12*std::exp(1/(4*Alpha*GammaY*GammaY))*
76  (std::exp(-r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) - std::sqrt(Alpha)*r12)) -
77  std::exp( r12/GammaY)*(1 - Erf(0.5/GammaY/std::sqrt(Alpha) + std::sqrt(Alpha)*r12)));
78 
79  // Ecoul
80  Etot += 1.44*p1->GetDefinition()->GetPDGCharge()*p2->GetDefinition()->GetPDGCharge()/r12*Erf(std::sqrt(Alpha)*r12);
81 
82  // Epaul
83  Etot = 0;
84 
85  for(G4int c3 = c2 + 1; c3 < nBarion; c3++)
86  {
87  G4KineticTrack* p3 = Barions.operator[](c3);
88  G4double r13 = (p1->GetPosition() - p3->GetPosition()).mag()*fermi;
89 
90  // Esk3
91  Etot = tGamma*std::pow(4*Alpha*Alpha/3/pi/pi, 1.5)*std::exp(-Alpha*(r12*r12 + r13*r13));
92  }
93  }
94  }
95  return Etot;
96 }
97 
98 //************************************************************************************************
99 // originated from the Numerical recipes error function
100 G4double G4RKFieldIntegrator::Erf(G4double X)
101 {
102  const G4double Z1 = 1;
103  const G4double HF = Z1/2;
104  const G4double C1 = 0.56418958;
105 
106  const G4double P10 = +3.6767877;
107  const G4double Q10 = +3.2584593;
108  const G4double P11 = -9.7970465E-2;
109 
110  static G4double P2[5] = { 7.3738883, 6.8650185, 3.0317993, 0.56316962, 4.3187787e-5 };
111  static G4double Q2[5] = { 7.3739609, 15.184908, 12.79553, 5.3542168, 1. };
112 
113  const G4double P30 = -1.2436854E-1;
114  const G4double Q30 = +4.4091706E-1;
115  const G4double P31 = -9.6821036E-2;
116 
117  G4double V = std::abs(X);
118  G4double H;
119  G4double Y;
120  G4int c1;
121 
122  if(V < HF)
123  {
124  Y = V*V;
125  H = X*(P10 + P11*Y)/(Q10+Y);
126  }
127  else
128  {
129  if(V < 4)
130  {
131  G4double AP = P2[4];
132  G4double AQ = Q2[4];
133  for(c1 = 3; c1 >= 0; c1--)
134  {
135  AP = P2[c1] + V*AP;
136  AQ = Q2[c1] + V*AQ;
137  }
138  H = 1 - std::exp(-V*V)*AP/AQ;
139  }
140  else
141  {
142  Y = 1./V*V;
143  H = 1 - std::exp(-V*V)*(C1+Y*(P30 + P31*Y)/(Q30 + Y))/V;
144  }
145  if (X < 0)
146  H = -H;
147  }
148  return H;
149 }
150 
151 //************************************************************************************************
152 //This is a QMD version to calculate excitation energy of a fragment,
153 //which consists from G4KTV &the Particles
154 /*
155 G4double G4RKFieldIntegrator::GetExcitationEnergy(const G4KineticTrackVector &theParticles)
156 {
157  // Excitation energy of a fragment consisting from A nucleons and Z protons
158  // is Etot - Z*Mp - (A - Z)*Mn - B(A, Z), where B(A,Z) is the binding energy of fragment
159  // and Mp, Mn are proton and neutron mass, respectively.
160  G4int NZ = 0;
161  G4int NA = 0;
162  G4double Etot = CalculateTotalEnergy(theParticles);
163  for(G4int cParticle = 0; cParticle < theParticles.length(); cParticle++)
164  {
165  G4KineticTrack* pKineticTrack = theParticles.at(cParticle);
166  G4int Encoding = std::abs(pKineticTrack->GetDefinition()->GetPDGEncoding());
167  if (Encoding == 2212)
168  NZ++, NA++;
169  if (Encoding == 2112)
170  NA++;
171  Etot -= pKineticTrack->GetDefinition()->GetPDGMass();
172  }
173  return Etot - G4NucleiProperties::GetBindingEnergy(NZ, NA);
174 }
175 */
176 
177 //*************************************************************************************************************************************
178 //This is a simplified method to get excitation energy of a residual
179 // nucleus with nHitNucleons.
181 {
182  const G4double MeanE = 50;
183  G4double Sum = 0;
184  for(G4int c1 = 0; c1 < nHitNucleons; c1++)
185  {
186  Sum += -MeanE*std::log(G4UniformRand());
187  }
188  return Sum;
189 }
190 //*************************************************************************************************************************************
191 
192 /*
193 //This is free propagation of particles for CASCADE mode. Target nucleons should be frozen
194 void G4RKFieldIntegrator::Integrate(G4KineticTrackVector& theParticles)
195  {
196  for(G4int cParticle = 0; cParticle < theParticles.length(); cParticle++)
197  {
198  G4KineticTrack* pKineticTrack = theParticles.at(cParticle);
199  pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector());
200  }
201  }
202 */
203 //*************************************************************************************************************************************
204 
205 void G4RKFieldIntegrator::Integrate(const G4KineticTrackVector& theBarions, G4double theTimeStep)
206 {
207  for(size_t cParticle = 0; cParticle < theBarions.size(); cParticle++)
208  {
209  G4KineticTrack* pKineticTrack = theBarions[cParticle];
210  pKineticTrack->SetPosition(pKineticTrack->GetPosition() + theTimeStep*pKineticTrack->Get4Momentum().boostVector());
211  }
212 }
213 
214 //*************************************************************************************************************************************
215 
216 // constant to calculate theCoulomb barrier
217 const G4double G4RKFieldIntegrator::coulomb = 1.44 / 1.14 * MeV;
218 
219 // kaon's potential constant (real part only)
220 // 0.35 + i0.82 or 0.63 + i0.89 fermi
221 const G4double G4RKFieldIntegrator::a_kaon = 0.35;
222 
223 // pion's potential constant (real part only)
225 // 0.35 + i0.82 or 0.63 + i0.89 fermi
226 const G4double G4RKFieldIntegrator::a_pion = 0.35;
227 
228 // antiproton's potential constant (real part only)
229 // 1.53 + i2.50 fermi
230 const G4double G4RKFieldIntegrator::a_antiproton = 1.53;
231 
232 // methods for calculating potentials for different types of particles
233 // aPosition is relative to the nucleus center
235 {
236  /*
237  const G4double Mn = 939.56563 * MeV; // mass of nuetron
238 
239  G4VNuclearDensity *theDencity;
240  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
241  else theDencity = new G4NuclearFermiDensity(theA, theZ);
242 
243  // GetDencity() accepts only G4ThreeVector so build it:
244  G4ThreeVector aPosition(0.0, 0.0, radius);
245  G4double density = theDencity->GetDensity(aPosition);
246  delete theDencity;
247 
248  G4FermiMomentum *fm = new G4FermiMomentum();
249  fm->Init(theA, theZ);
250  G4double fermiMomentum = fm->GetFermiMomentum(density);
251  delete fm;
252 
253  return sqr(fermiMomentum)/(2 * Mn)
254  + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
255  //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA;
256  */
257 
258  return 0.0;
259 }
260 
262 {
263  /*
264  // calculate Coulomb barrier value
265  G4double theCoulombBarrier = coulomb * theZ/(1. + std::pow(theA, 1./3.));
266  const G4double Mp = 938.27231 * MeV; // mass of proton
267 
268  G4VNuclearDensity *theDencity;
269  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
270  else theDencity = new G4NuclearFermiDensity(theA, theZ);
271 
272  // GetDencity() accepts only G4ThreeVector so build it:
273  G4ThreeVector aPosition(0.0, 0.0, radius);
274  G4double density = theDencity->GetDensity(aPosition);
275  delete theDencity;
276 
277  G4FermiMomentum *fm = new G4FermiMomentum();
278  fm->Init(theA, theZ);
279  G4double fermiMomentum = fm->GetFermiMomentum(density);
280  delete fm;
281 
282  return sqr(fermiMomentum)/ (2 * Mp)
283  + G4CreateNucleus::GetBindingEnergy(theZ, theA)/theA;
284  //+ G4NucleiProperties::GetBindingEnergy(theZ, theA)/theA
285  + theCoulombBarrier;
286  */
287 
288  return 0.0;
289 }
290 
292 {
293  /*
294  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
295  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
296  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
297  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
298 
299  const G4double Mp = 938.27231 * MeV; // mass of proton
300  G4double mu = (theM * Mp)/(theM + Mp);
301 
302  // antiproton's potential coefficient
303  // V = coeff_antiproton * nucleus_density
304  G4double coeff_antiproton = -2.*pi/mu * (1. + Mp) * a_antiproton;
305 
306  G4VNuclearDensity *theDencity;
307  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
308  else theDencity = new G4NuclearFermiDensity(theA, theZ);
309 
310  // GetDencity() accepts only G4ThreeVector so build it:
311  G4ThreeVector aPosition(0.0, 0.0, radius);
312  G4double density = theDencity->GetDensity(aPosition);
313  delete theDencity;
314 
315  return coeff_antiproton * density;
316  */
317 
318  return 0.0;
319 }
320 
322 {
323  /*
324  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
325  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
326  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
327  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
328 
329  const G4double Mk = 496. * MeV; // mass of "kaon"
330  G4double mu = (theM * Mk)/(theM + Mk);
331 
332  // kaon's potential coefficient
333  // V = coeff_kaon * nucleus_density
334  G4double coeff_kaon = -2.*pi/mu * (1. + Mk/theM) * a_kaon;
335 
336  G4VNuclearDensity *theDencity;
337  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
338  else theDencity = new G4NuclearFermiDensity(theA, theZ);
339 
340  // GetDencity() accepts only G4ThreeVector so build it:
341  G4ThreeVector aPosition(0.0, 0.0, radius);
342  G4double density = theDencity->GetDensity(aPosition);
343  delete theDencity;
344 
345  return coeff_kaon * density;
346  */
347 
348  return 0.0;
349 }
350 
352 {
353  /*
354  //G4double theM = G4NucleiProperties::GetAtomicMass(theA, theZ);
355  G4double theM = theZ * G4Proton::Proton()->GetPDGMass()
356  + (theA - theZ) * G4Neutron::Neutron()->GetPDGMass()
357  + G4CreateNucleus::GetBindingEnergy(theZ, theA);
358 
359  const G4double Mpi = 139. * MeV; // mass of "pion"
360  G4double mu = (theM * Mpi)/(theM + Mpi);
361 
362  // pion's potential coefficient
363  // V = coeff_pion * nucleus_density
364  G4double coeff_pion = -2.*pi/mu * (1. + Mpi) * a_pion;
365 
366  G4VNuclearDensity *theDencity;
367  if(theA < 17) theDencity = new G4NuclearShellModelDensity(theA, theZ);
368  else theDencity = new G4NuclearFermiDensity(theA, theZ);
369 
370  // GetDencity() accepts only G4ThreeVector so build it:
371  G4ThreeVector aPosition(0.0, 0.0, radius);
372  G4double density = theDencity->GetDensity(aPosition);
373  delete theDencity;
374 
375  return coeff_pion * density;
376  */
377 
378  return 0.0;
379 }