Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4QNucleus.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id$
28 //
29 // ---------------- G4QNucleus ----------------
30 // by Mikhail Kossov, Sept 1999.
31 // class header for the nuclei and nuclear environment of the CHIPS Model
32 // -----------------------------------------------------------------------
33 // Short description: a class describing properties of nuclei, which
34 // are necessary for the CHIPS Model.
35 // -----------------------------------------------------------------------
36 
37 #ifndef G4QNucleus_h
38 #define G4QNucleus_h 1
39 
40 #include <utility>
41 #include <vector>
43 
44 #include "globals.hh"
45 #include "G4RandomDirection.hh"
46 #include "G4QCandidateVector.hh"
47 #include "G4QHadronVector.hh"
48 #include "G4LorentzRotation.hh"
49 #include "G4QChipolino.hh"
50 
51 class G4QNucleus : public G4QHadron
52 {
53 public:
54  G4QNucleus(); // Default Constructor
55  G4QNucleus(G4int nucPDG); // At Rest PDG-Constructor
56  G4QNucleus(G4LorentzVector p, G4int nucPDG); // Full PDG-Constructor
57  G4QNucleus(G4QContent nucQC); // At Rest QuarkCont-Constructor
58  G4QNucleus(G4QContent nucQC, G4LorentzVector p); // Full QuarkCont-Constructor
59  G4QNucleus(G4int z, G4int n, G4int s=0); // At Rest ZNS-Constructor
60  G4QNucleus(G4int z, G4int n, G4int s, G4LorentzVector p);// Full ZNS-Constructor
61  G4QNucleus(G4QNucleus* right, G4bool cop3D = false); // Copy Constructor by pointer
62  G4QNucleus(const G4QNucleus &right, G4bool cop3D=false); // Copy Constructor by value
63  ~G4QNucleus(); // Public Destructor
64  // Overloaded Operators
65  const G4QNucleus& operator=(const G4QNucleus& right);
66  G4bool operator==(const G4QNucleus &right) const {return this==&right;}
67  G4bool operator!=(const G4QNucleus &right) const {return this!=&right;}
68  // Specific Selectors
69  G4int GetPDG() const {return 90000000+1000*(1000*S+Z)+N;}// PDG Code of Nucleus
70  G4int GetZ() const {return Z;} // Get a#of protons
71  G4int GetN() const {return N;} // Get a#of neutrons
72  G4int GetS() const {return S;} // Get a#of lambdas
73  G4int GetA() const {return Z+N+S;} // Get A of the nucleus
74  G4int GetDZ() const {return dZ;} // Get a#of protons in dense region
75  G4int GetDN() const {return dN;} // Get a#of neutrons in dense region
76  G4int GetDS() const {return dS;} // Get a#of lambdas in dense region
77  G4int GetDA() const {return dZ+dN+dS;} // Get A of the dense part of nucleus
78  G4int GetMaxClust() const {return maxClust;} // Get Max BarNum of Clusters
79  G4double GetProbability(G4int bn=0) const {return probVect[bn];} // clust(BarN)probabil
80  G4double GetMZNS() const {return GetQPDG().GetNuclMass(Z,N,S);} // not H or Q
81  G4double GetTbIntegral(); // Calculate the integral of T(b)
82  G4double GetGSMass() const {return GetQPDG().GetMass();}//Nucleus GSMass (not Hadron)
83  G4QContent GetQCZNS() const // Get ZNS quark content of Nucleus
84  {
85  if(S>=0) return G4QContent(Z+N+N+S,Z+Z+N+S,S,0,0,0);
86  else return G4QContent(Z+N+N+S,Z+Z+N+S,0,0,0,-S);
87  }
88  G4int GetNDefMesonC() const{return nDefMesonC;}; // max#of predefed mesonCandidates
89  G4int GetNDefBaryonC()const{return nDefBaryonC;};// max#of predefed baryonCandidates
90  G4double GetDensity(const G4ThreeVector&aPos) {return rho0*GetRelativeDensity(aPos);}
91  G4double GetRho0() {return rho0;} // One nucleon prob-density
92  G4double GetRelativeDensity(const G4ThreeVector& aPosition); // Densyty/rho0
93  G4double GetRelWSDensity(const G4double& r) // Wood-Saxon rho/rho0(r)
94  {return 1./(1.+std::exp((r-radius)/WoodSaxonSurf));}
95  G4double GetRelOMDensity(const G4double& r2){return std::exp(-r2/radius);} // OscModelRelDens
96  G4double GetRadius(const G4double maxRelativeDenisty=0.5); // Radius of %ofDensity
97  G4double GetOuterRadius(); // Get radius of the most far nucleon
98  G4double GetDeriv(const G4ThreeVector& point); // Derivitive of density
99  G4double GetFermiMomentum(G4double density); // Returns modul of FermyMomentum(dens)
101  {
102  //G4cout<<"G4QNucleus::GetNextNucleon: cN="<<currentNucleon<<", A="<<GetA()<<G4endl;
103  return (currentNucleon>=0&&currentNucleon<GetA()) ? theNucleons[currentNucleon++] : 0;
104  }
105  void SubtractNucleon(G4QHadron* pNucleon); // Subtract the nucleon from the 3D Nucleus
106  void DeleteNucleons(); // Deletes all residual nucleons
108  {
109  G4LorentzVector sum(0.,0.,0.,0.);
110  for(unsigned i=0; i<theNucleons.size(); i++) sum += theNucleons[i]->Get4Momentum();
111  sum.setE(std::sqrt(sqr(GetGSMass())+sum.v().mag2())); // Energy is corrected !
112  return sum;
113  }
114  std::vector<G4double> const* GetBThickness() {return &Tb;} // T(b) function, step .1 fm
115 
116  // Specific Modifiers
117  G4bool EvaporateBaryon(G4QHadron* h1,G4QHadron* h2); // Evaporate Baryon from Nucleus
118  void EvaporateNucleus(G4QHadron* hA, G4QHadronVector* oHV);// Evaporate Nucleus
119  //void DecayBaryon(G4QHadron* dB, G4QHadronVector* oHV); // gamma+N or Delt->N+Pi @@later
120  void DecayDibaryon(G4QHadron* dB, G4QHadronVector* oHV); // deuteron is kept
121  void DecayAntiDibaryon(G4QHadron* dB, G4QHadronVector* oHV);// antiDeuteron is kept
122  void DecayIsonucleus(G4QHadron* dB, G4QHadronVector* oHV); // nP+(Pi+) or nN+(Pi-)
123  void DecayMultyBaryon(G4QHadron* dB, G4QHadronVector* oHV);// A*p, A*n or A*L
124  void DecayAntiStrange(G4QHadron* dB, G4QHadronVector* oHV);// nuclei with K+/K0
125  void DecayAlphaBar(G4QHadron* dB, G4QHadronVector* oHV); // alpha+p or alpha+n
126  void DecayAlphaDiN(G4QHadron* dB, G4QHadronVector* oHV); // alpha+p+p
127  void DecayAlphaAlpha(G4QHadron* dB, G4QHadronVector* oHV); // alpha+alpha
128  G4int SplitBaryon(); // Is it possible to split baryon/alpha
129  G4int HadrToNucPDG(G4int hPDG); // Converts hadronic PDGCode to nuclear
130  G4int NucToHadrPDG(G4int nPDG); // Converts nuclear PDGCode to hadronic
131  G4bool Split2Baryons(); // Is it possible to split two baryons?
132  void ActivateBThickness(); // Calculate T(b) for nucleus (db=.1fm)
133  G4double GetBThickness(G4double b); // Calculates T(b)
134  G4double GetThickness(G4double b); // Calculates T(b)/rho(0)
135  void InitByPDG(G4int newPDG); // Init existing nucleus by new PDG
136  void InitByQC(G4QContent newQC) // Init existing nucleus by new QCont
137  {G4int PDG=G4QPDGCode(newQC).GetPDGCode(); InitByPDG(PDG);}
138  void IncProbability(G4int bn); // Add one cluster to probability
139  void Increase(G4int PDG, G4LorentzVector LV = G4LorentzVector(0.,0.,0.,0.));
140  void Increase(G4QContent QC, G4LorentzVector LV = G4LorentzVector(0.,0.,0.,0.));
141  void Reduce(G4int PDG); // Reduce Nucleus by PDG fragment
143  void SetMaxClust(G4int maxC){maxClust=maxC;}// Set Max BarNum of Clusters
144  void InitCandidateVector(G4QCandidateVector& theQCandidates,
145  G4int nM=45, G4int nB=72, G4int nC=117);
146  void PrepareCandidates(G4QCandidateVector& theQCandidates, G4bool piF=false, G4bool
147  gaF=false, G4LorentzVector LV=G4LorentzVector(0.,0.,0.,0.));
148  G4int UpdateClusters(G4bool din); // Return a#of clusters & calc.probab's
149  G4QNucleus operator+=(const G4QNucleus& rhs); // Add a cluster to the nucleus
150  G4QNucleus operator-=(const G4QNucleus& rhs); // Subtract a cluster from a nucleus
151  G4QNucleus operator*=(const G4int& rhs); // Multiplication of the Nucleus
152  G4bool StartLoop(); // returns size of theNucleons (cN=0)
153  G4bool ReduceSum(G4ThreeVector* vectors, G4ThreeVector sum);// Reduce zero-sum of vectors
154  void SimpleSumReduction(G4ThreeVector* vectors, G4ThreeVector sum); // Reduce zero-V-sum
155  void DoLorentzBoost(const G4LorentzVector& theBoost) // Boost nucleons by 4-vector
156  {
157  theMomentum.boost(theBoost);
158  for(unsigned i=0; i<theNucleons.size(); i++) theNucleons[i]->Boost(theBoost);
159  }
160  void DoLorentzRotation(const G4LorentzRotation& theLoRot) // Lorentz Rotate nucleons
161  {
162  theMomentum=theLoRot*theMomentum;
163  for(unsigned i=0; i<theNucleons.size(); i++) theNucleons[i]->LorentzRotate(theLoRot);
164  }
165  void DoLorentzBoost(const G4ThreeVector& theBeta)// Boost nucleons by v/c
166  {
167  theMomentum.boost(theBeta);
168  for(unsigned i=0; i<theNucleons.size(); i++) theNucleons[i]->Boost(theBeta);
169  }
171  void DoLorentzContraction(const G4ThreeVector& theBeta); // Lorentz Contraction by v/c
172  void DoTranslation(const G4ThreeVector& theShift); // Used only in G4QFragmentation
173 
174  // Static functions
175  static void SetParameters(G4double fN=.1,G4double fD=.05, G4double cP=4., G4double mR=1.,
176  G4double nD=.8*CLHEP::fermi);
177 
178  // Specific General Functions
179  G4int RandomizeBinom(G4double p,G4int N); // Randomize according to Binomial Law
180  G4double CoulombBarGen(const G4double& rZ, const G4double& rA, const G4double& cZ,
181  const G4double& cA); // CoulombBarrier in MeV (General)
182  G4double CoulombBarrier(const G4double& cZ=1, const G4double& cA=1, G4double dZ=0.,
183  G4double dA=0.); // CoulombBarrier in MeV
184  G4double FissionCoulombBarrier(const G4double& cZ, const G4double& cA, G4double dZ=0.,
185  G4double dA=0.); // Fission CoulombBarrier in MeV
186  G4double BindingEnergy(const G4double& cZ=0, const G4double& cA=0, G4double dZ=0.,
187  G4double dA=0.);
188  G4double CoulBarPenProb(const G4double& CB, const G4double& E, const G4int& C,
189  const G4int& B);
190  std::pair<G4double, G4double> ChooseImpactXandY(G4double maxImpact); // Randomize bbar
191  void ChooseNucleons(); // Initializes 3D Nucleons
192  void ChoosePositions(); // Initializes positions of 3D nucleons
193  void ChooseFermiMomenta(); // Initializes FermyMoms of 3D nucleons
194  void InitDensity(); // Initializes density distribution
195  void Init3D(); // automatically starts the LOOP
196 private:
197  // Specific Encapsulated Functions
198  void SetZNSQC(G4int z, G4int n, G4int s); // Set QC, using Z,N,S
199  G4QNucleus GetThis() const {return G4QNucleus(Z,N,S);} // @@ Check for memory leak
200 
201 // Body
202 private:
203  // Static Parameters
204  static const G4int nDefMesonC =45;
205  static const G4int nDefBaryonC=72;
206  //
207  static G4double freeNuc; // probability of the quasi-free baryon on surface
208  static G4double freeDib; // probability of the quasi-free dibaryon on surface
209  static G4double clustProb; // clusterization probability in dense region
210  static G4double mediRatio; // relative vacuum hadronization probability
211  static G4double nucleonDistance;// Distance between nucleons (0.8 fm)
212  static G4double WoodSaxonSurf; // Surface parameter of Wood-Saxon density (0.545 fm)
213  // The basic
214  G4int Z; // Z of the Nucleus
215  G4int N; // N of the Nucleus
216  G4int S; // S of the Nucleus
217  // The secondaries
218  G4int dZ; // Z of the dense region of the nucleus
219  G4int dN; // N of the dense region of the nucleus
220  G4int dS; // S of the dense region of the nucleus
221  G4int maxClust; // Baryon Number of the last calculated cluster
222  G4double probVect[256]; // Cluster probability ("a#of issues" can be real) Vector
223  // 3D
224  G4QHadronVector theNucleons; // Vector of nucleons of which the Nucleus consists of
225  G4int currentNucleon; // Current nucleon for the NextNucleon (? M.K.)
226  G4double rho0; // Normalazation density
227  G4double radius; // Nuclear radius
228  std::vector<G4double> Tb; // T(b) function with step .1 fm (@@ make .1 a parameter)
229  G4bool TbActive; // Flag that the T(b) is activated
230  G4bool RhoActive; // Flag that the Density is activated
231 };
232 
233 std::ostream& operator<<(std::ostream& lhs, G4QNucleus& rhs);
234 std::ostream& operator<<(std::ostream& lhs, const G4QNucleus& rhs);
235 
236 #endif