Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4QCaptureAtRest.hh
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id$
27 //
28 // ---------------- G4QCaptureAtRest header ----------------
29 // by Mikhail Kossov, December 2003.
30 // Header of G4QCaptureAtRest class of the CHIPS Simulation Branch in GEANT4
31 // -------------------------------------------------------------------------------
32 // At present (May 2009) only pi-, K- and antiNucleon capture are tested, which
33 // are the most crucial for the in matter simulation. The hyperon capture (Sigma-,
34 // Xi-, Omega-, antiSigma+) is implemented, but not tested and it is not clear how
35 // frequently this kind of interaction takes place in the simulation of the hadronic
36 // showers. The antiNeutron Capture At Rest is implemented by this G4QCaptureAtRest
37 // class, but it is not clear how the anti-neutrons are stopped in Geant4 tracking.
38 // It can be stopped only by interactions with electrons, as the annihilation cross
39 // section is huge and any interaction with nucleus results in annihilation. The
40 // mu- & tau- Capture At Rest (mu-,nu) & (mu-,nu) are weak processes, which must
41 // be simulated together with the reversed Betha decay (e-,nu). While mu- capture is
42 // similar to the pi- capture from the nuclear fragmentation point of view (the energy
43 // scale is shrinked because m_mu < m_pi and a part of the energy is lost because of
44 // the neutrino radiation), the time scale of the mu- capture process is not exact,
45 // but it is clear, that it is well delayed. By this reason the mu- capture can be
46 // excluded from the G4QCaptureAtRest and can be implemented in the "LongLivingDecay"
47 // branch of simulation, which includes excited states of nuclei and short living
48 // isotopes. On the "Fast Simulation" Level all radioactive isotopes, long living
49 // nuclear excitations, mu-atoms etc, which can be important for the background
50 // signals, must be collected in the continuous database and simulated separately.
51 // CHIPS is SU(3) event generator, so it does not include reactions with the heavy
52 // (c,b,t) quarks involved such as antiDs-, which can be simulated only by SU(6)
53 // QUIPS (QUark Invariant Phase Space) model. - May 2009, M.Kossov.-
54 // -------------------------------------------------------------------------------
55 // All algorithms are similar: the captured particle is absorbed by a nuclear cluster
56 // with the subsequent Quark Exchange nuclear fragmentation. The Anti-Proton (antiSigma+)
57 // Capture algorithm is more complicated: the anti-baryon annihilates with the quasyfree
58 // nucleons on the nuclear periphery. The peripheral interaction results in a number
59 // of mesons. A part of them misses the nucleus and comes directly to the output,
60 // while others create Multy Quasmon Excitation in the nucleus with the subsequent
61 // Quark Excange Fragmentation of the nucleus. At present the two step mechanism of
62 // the antiProton-Nucleus interaction is hardwired in the G4QEnvironment class, but
63 // with time the first step of the interaction can be moved to this G4QCaptureAtRest
64 // class, to make the G4QEnvirement class simpler and better defined. This is
65 // necessary because the G4QEnvironment class is going to loos the previlage of
66 // the CHIPS Head Class (as previously the G4Quasmon class lost it) and G4QCollision
67 // class is going to be the CHIPS Head Class, where a few Nuclear Environments can
68 // exist (e.g. the Nuclear Environment of the Projectile Nucleus and the Nuclear
69 // Environment of the Target Nucleus). By the way, the antiProton-H1 interaction At
70 // Rest (CHIPSI) can be still simulated with only the G4Quasmon class, as this
71 // reaction does not have any nuclear environment.- May 2009, Mikhail Kossov.-
72 // --------------------------------------------------------------------------------
73 // ****************************************************************************************
74 // This Header is a part of the CHIPS physics package (author: M. Kosov)
75 // ****************************************************************************************
76 // Short Description: This is a universal process for nuclear capture
77 // (including annihilation) of all negative particles (cold neutrons, negative
78 // hadrons, negative leptons: mu- & tau-). It can be used for the cold neutron
79 // capture, but somebody should decide what is the probability (defined
80 // by the capture cross-section and atomic material properties) to switch
81 // the cold neutron to the at-rest neutron. - M.K. 2009.
82 // ----------------------------------------------------------------------
83 
84 #ifndef G4QCaptureAtRest_hh
85 #define G4QCaptureAtRest_hh
86 
87 // GEANT4 Headers
88 #include "globals.hh"
89 #include "G4ios.hh"
90 #include "G4VRestProcess.hh"
91 #include "G4ParticleTypes.hh"
92 #include "G4VParticleChange.hh"
93 #include "G4ParticleDefinition.hh"
94 #include "G4DynamicParticle.hh"
95 #include "Randomize.hh"
96 #include "G4ThreeVector.hh"
97 #include "G4LorentzVector.hh"
98 #include "G4RandomDirection.hh"
99 
100 // CHIPS Headers
101 #include "G4QEnvironment.hh"
102 #include "G4QIsotope.hh"
103 #include "G4QPDGToG4Particle.hh"
104 
106 {
107 private:
108 
109  // Hide assignment operator as private
110  G4QCaptureAtRest& operator=(const G4QCaptureAtRest &right);
111 
112  // Copy constructor
114 
115 public:
116 
117  // Constructor
118  G4QCaptureAtRest(const G4String& processName ="CHIPSNuclearCaptureAtRest");
119 
120  // Destructor
121  virtual ~G4QCaptureAtRest();
122 
123  virtual G4bool IsApplicable(const G4ParticleDefinition& particle);
124 
125  G4VParticleChange* AtRestDoIt(const G4Track& aTrack, const G4Step& aStep);
126 
128 
130 
131  // Static functions
132  static void SetManual();
133  static void SetStandard();
134  static void SetParameters(G4double temper=180., G4double ssin2g=.1, G4double etaetap=.3,
135  G4double fN=0., G4double fD=0., G4double cP=1., G4double mR=1.,
136  G4int npCHIPSWorld=234, G4double solAn=.5, G4bool efFlag=false,
137  G4double piTh=141.4,G4double mpi2=20000.,G4double dinum=1880.);
138 
139 protected:
140 
141  // zero mean lifetime
143  G4double RandomizeDecayElectron(G4int Z); // Randomize energy of decay electron (in MeV)
144 private:
145 
146  G4bool RandomizeMuDecayOrCapture(G4int Z, G4int N); // true=MuCapture, false=MuDecay
147  void CalculateEnergyDepositionOfMuCapture(G4int Z); // (2p->1s, MeV) @@ Now N-independent
148  G4bool RandomizeTauDecayOrCapture(G4int Z, G4int N);// true=TauCapture, false=TauDecay
149  void CalculateEnergyDepositionOfTauCapture(G4int Z);// (2p->1s, MeV) @@N-independ,Improve
150 
151 // BODY
152 private:
153  // Static Parameters
154  static G4bool manualFlag; // If false then standard parameters are used
155  static G4int nPartCWorld; // The#of particles for hadronization (limit of A of fragm.)
156  // -> Parameters of the G4Quasmon class:
157  static G4double Temperature; // Quasmon Temperature
158  static G4double SSin2Gluons; // Percent of ssbar sea in a constituen gluon
159  static G4double EtaEtaprime; // Part of eta-prime in all etas
160  // -> Parameters of the G4QNucleus class:
161  static G4double freeNuc; // probability of the quasi-free baryon on surface
162  static G4double freeDib; // probability of the quasi-free dibaryon on surface
163  static G4double clustProb; // clusterization probability in dense region
164  static G4double mediRatio; // relative vacuum hadronization probability
165  // -> Parameters of the G4QEnvironment class:
166  static G4bool EnergyFlux; // Flag for Energy Flux use instead of Multy Quasmon
167  static G4double SolidAngle; // Part of Solid Angle to capture secondaries(@@A-dep)
168  static G4double PiPrThresh; // Pion Production Threshold for gammas
169  static G4double M2ShiftVir; // Shift for M2=-Q2=m_pi^2 of the virtual gamma
170  static G4double DiNuclMass; // Double Nucleon Mass for virtual normalization
171  //
172  // Working parameters
173  G4LorentzVector EnMomConservation; // Residual of Energy/Momentum Cons.
174  G4int nOfNeutrons; // #of neutrons in the target nucleus
175  // Modifires for the reaction
176  G4double Time; // Time shift of the capture reaction
177  G4double EnergyDeposition; // Energy deposited in the reaction
178 
179 };
180 #endif