Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4PolyconeSide.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 //
27 // $Id: G4PolyconeSide.cc 67011 2013-01-29 16:17:41Z gcosmo $
28 //
29 //
30 // --------------------------------------------------------------------
31 // GEANT 4 class source file
32 //
33 //
34 // G4PolyconeSide.cc
35 //
36 // Implementation of the face representing one conical side of a polycone
37 //
38 // --------------------------------------------------------------------
39 
40 #include "G4PolyconeSide.hh"
41 #include "meshdefs.hh"
42 #include "G4PhysicalConstants.hh"
43 #include "G4IntersectingCone.hh"
44 #include "G4ClippablePolygon.hh"
45 #include "G4AffineTransform.hh"
46 #include "G4SolidExtentList.hh"
47 #include "G4GeometryTolerance.hh"
48 
49 #include "Randomize.hh"
50 
51 //
52 // Constructor
53 //
54 // Values for r1,z1 and r2,z2 should be specified in clockwise
55 // order in (r,z).
56 //
58  const G4PolyconeSideRZ *tail,
59  const G4PolyconeSideRZ *head,
60  const G4PolyconeSideRZ *nextRZ,
61  G4double thePhiStart,
62  G4double theDeltaPhi,
63  G4bool thePhiIsOpen,
64  G4bool isAllBehind )
65  : ncorners(0), corners(0)
66 {
68  fSurfaceArea = 0.0;
69  fPhi.first = G4ThreeVector(0,0,0);
70  fPhi.second= 0.0;
71 
72  //
73  // Record values
74  //
75  r[0] = tail->r; z[0] = tail->z;
76  r[1] = head->r; z[1] = head->z;
77 
78  phiIsOpen = thePhiIsOpen;
79  if (phiIsOpen)
80  {
81  deltaPhi = theDeltaPhi;
82  startPhi = thePhiStart;
83 
84  //
85  // Set phi values to our conventions
86  //
87  while (deltaPhi < 0.0) deltaPhi += twopi;
88  while (startPhi < 0.0) startPhi += twopi;
89 
90  //
91  // Calculate corner coordinates
92  //
93  ncorners = 4;
95 
96  corners[0] = G4ThreeVector( tail->r*std::cos(startPhi),
97  tail->r*std::sin(startPhi), tail->z );
98  corners[1] = G4ThreeVector( head->r*std::cos(startPhi),
99  head->r*std::sin(startPhi), head->z );
100  corners[2] = G4ThreeVector( tail->r*std::cos(startPhi+deltaPhi),
101  tail->r*std::sin(startPhi+deltaPhi), tail->z );
102  corners[3] = G4ThreeVector( head->r*std::cos(startPhi+deltaPhi),
103  head->r*std::sin(startPhi+deltaPhi), head->z );
104  }
105  else
106  {
107  deltaPhi = twopi;
108  startPhi = 0.0;
109  }
110 
111  allBehind = isAllBehind;
112 
113  //
114  // Make our intersecting cone
115  //
116  cone = new G4IntersectingCone( r, z );
117 
118  //
119  // Calculate vectors in r,z space
120  //
121  rS = r[1]-r[0]; zS = z[1]-z[0];
122  length = std::sqrt( rS*rS + zS*zS);
123  rS /= length; zS /= length;
124 
125  rNorm = +zS;
126  zNorm = -rS;
127 
128  G4double lAdj;
129 
130  prevRS = r[0]-prevRZ->r;
131  prevZS = z[0]-prevRZ->z;
132  lAdj = std::sqrt( prevRS*prevRS + prevZS*prevZS );
133  prevRS /= lAdj;
134  prevZS /= lAdj;
135 
136  rNormEdge[0] = rNorm + prevZS;
137  zNormEdge[0] = zNorm - prevRS;
138  lAdj = std::sqrt( rNormEdge[0]*rNormEdge[0] + zNormEdge[0]*zNormEdge[0] );
139  rNormEdge[0] /= lAdj;
140  zNormEdge[0] /= lAdj;
141 
142  nextRS = nextRZ->r-r[1];
143  nextZS = nextRZ->z-z[1];
144  lAdj = std::sqrt( nextRS*nextRS + nextZS*nextZS );
145  nextRS /= lAdj;
146  nextZS /= lAdj;
147 
148  rNormEdge[1] = rNorm + nextZS;
149  zNormEdge[1] = zNorm - nextRS;
150  lAdj = std::sqrt( rNormEdge[1]*rNormEdge[1] + zNormEdge[1]*zNormEdge[1] );
151  rNormEdge[1] /= lAdj;
152  zNormEdge[1] /= lAdj;
153 }
154 
155 
156 //
157 // Fake default constructor - sets only member data and allocates memory
158 // for usage restricted to object persistency.
159 //
161  : startPhi(0.), deltaPhi(0.), phiIsOpen(false), allBehind(false),
162  cone(0), rNorm(0.), zNorm(0.), rS(0.), zS(0.), length(0.),
163  prevRS(0.), prevZS(0.), nextRS(0.), nextZS(0.), ncorners(0), corners(0),
164  kCarTolerance(0.), fSurfaceArea(0.)
165 {
166  r[0] = r[1] = 0.;
167  z[0] = z[1] = 0.;
168  rNormEdge[0]= rNormEdge[1] = 0.;
169  zNormEdge[0]= zNormEdge[1] = 0.;
170 }
171 
172 
173 //
174 // Destructor
175 //
177 {
178  delete cone;
179  if (phiIsOpen) { delete [] corners; }
180 }
181 
182 
183 //
184 // Copy constructor
185 //
187  : G4VCSGface(), ncorners(0), corners(0)
188 {
189  CopyStuff( source );
190 }
191 
192 
193 //
194 // Assignment operator
195 //
197 {
198  if (this == &source) { return *this; }
199 
200  delete cone;
201  if (phiIsOpen) { delete [] corners; }
202 
203  CopyStuff( source );
204 
205  return *this;
206 }
207 
208 
209 //
210 // CopyStuff
211 //
213 {
214  r[0] = source.r[0];
215  r[1] = source.r[1];
216  z[0] = source.z[0];
217  z[1] = source.z[1];
218 
219  startPhi = source.startPhi;
220  deltaPhi = source.deltaPhi;
221  phiIsOpen = source.phiIsOpen;
222  allBehind = source.allBehind;
223 
224  kCarTolerance = source.kCarTolerance;
225  fSurfaceArea = source.fSurfaceArea;
226 
227  cone = new G4IntersectingCone( *source.cone );
228 
229  rNorm = source.rNorm;
230  zNorm = source.zNorm;
231  rS = source.rS;
232  zS = source.zS;
233  length = source.length;
234  prevRS = source.prevRS;
235  prevZS = source.prevZS;
236  nextRS = source.nextRS;
237  nextZS = source.nextZS;
238 
239  rNormEdge[0] = source.rNormEdge[0];
240  rNormEdge[1] = source.rNormEdge[1];
241  zNormEdge[0] = source.zNormEdge[0];
242  zNormEdge[1] = source.zNormEdge[1];
243 
244  if (phiIsOpen)
245  {
246  ncorners = 4;
248 
249  corners[0] = source.corners[0];
250  corners[1] = source.corners[1];
251  corners[2] = source.corners[2];
252  corners[3] = source.corners[3];
253  }
254 }
255 
256 
257 //
258 // Intersect
259 //
261  const G4ThreeVector &v,
262  G4bool outgoing,
263  G4double surfTolerance,
264  G4double &distance,
265  G4double &distFromSurface,
266  G4ThreeVector &normal,
267  G4bool &isAllBehind )
268 {
269  G4double s1, s2;
270  G4double normSign = outgoing ? +1 : -1;
271 
272  isAllBehind = allBehind;
273 
274  //
275  // Check for two possible intersections
276  //
277  G4int nside = cone->LineHitsCone( p, v, &s1, &s2 );
278  if (nside == 0) return false;
279 
280  //
281  // Check the first side first, since it is (supposed to be) closest
282  //
283  G4ThreeVector hit = p + s1*v;
284 
285  if (PointOnCone( hit, normSign, p, v, normal ))
286  {
287  //
288  // Good intersection! What about the normal?
289  //
290  if (normSign*v.dot(normal) > 0)
291  {
292  //
293  // We have a valid intersection, but it could very easily
294  // be behind the point. To decide if we tolerate this,
295  // we have to see if the point p is on the surface near
296  // the intersecting point.
297  //
298  // What does it mean exactly for the point p to be "near"
299  // the intersection? It means that if we draw a line from
300  // p to the hit, the line remains entirely within the
301  // tolerance bounds of the cone. To test this, we can
302  // ask if the normal is correct near p.
303  //
304  G4double pr = p.perp();
305  if (pr < DBL_MIN) pr = DBL_MIN;
306  G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
307  if (normSign*v.dot(pNormal) > 0)
308  {
309  //
310  // p and intersection in same hemisphere
311  //
312  G4double distOutside2;
313  distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
314  if (distOutside2 < surfTolerance*surfTolerance)
315  {
316  if (distFromSurface > -surfTolerance)
317  {
318  //
319  // We are just inside or away from the
320  // surface. Accept *any* value of distance.
321  //
322  distance = s1;
323  return true;
324  }
325  }
326  }
327  else
328  distFromSurface = s1;
329 
330  //
331  // Accept positive distances
332  //
333  if (s1 > 0)
334  {
335  distance = s1;
336  return true;
337  }
338  }
339  }
340 
341  if (nside==1) return false;
342 
343  //
344  // Well, try the second hit
345  //
346  hit = p + s2*v;
347 
348  if (PointOnCone( hit, normSign, p, v, normal ))
349  {
350  //
351  // Good intersection! What about the normal?
352  //
353  if (normSign*v.dot(normal) > 0)
354  {
355  G4double pr = p.perp();
356  if (pr < DBL_MIN) pr = DBL_MIN;
357  G4ThreeVector pNormal( rNorm*p.x()/pr, rNorm*p.y()/pr, zNorm );
358  if (normSign*v.dot(pNormal) > 0)
359  {
360  G4double distOutside2;
361  distFromSurface = -normSign*DistanceAway( p, false, distOutside2 );
362  if (distOutside2 < surfTolerance*surfTolerance)
363  {
364  if (distFromSurface > -surfTolerance)
365  {
366  distance = s2;
367  return true;
368  }
369  }
370  }
371  else
372  distFromSurface = s2;
373 
374  if (s2 > 0)
375  {
376  distance = s2;
377  return true;
378  }
379  }
380  }
381 
382  //
383  // Better luck next time
384  //
385  return false;
386 }
387 
388 
390 {
391  G4double normSign = outgoing ? -1 : +1;
392  G4double distFrom, distOut2;
393 
394  //
395  // We have two tries for each hemisphere. Try the closest first.
396  //
397  distFrom = normSign*DistanceAway( p, false, distOut2 );
398  if (distFrom > -0.5*kCarTolerance )
399  {
400  //
401  // Good answer
402  //
403  if (distOut2 > 0)
404  return std::sqrt( distFrom*distFrom + distOut2 );
405  else
406  return std::fabs(distFrom);
407  }
408 
409  //
410  // Try second side.
411  //
412  distFrom = normSign*DistanceAway( p, true, distOut2 );
413  if (distFrom > -0.5*kCarTolerance)
414  {
415 
416  if (distOut2 > 0)
417  return std::sqrt( distFrom*distFrom + distOut2 );
418  else
419  return std::fabs(distFrom);
420  }
421 
422  return kInfinity;
423 }
424 
425 
426 //
427 // Inside
428 //
430  G4double tolerance,
431  G4double *bestDistance )
432 {
433  //
434  // Check both sides
435  //
436  G4double distFrom[2], distOut2[2], dist2[2];
437  G4double edgeRZnorm[2];
438 
439  distFrom[0] = DistanceAway( p, false, distOut2[0], edgeRZnorm );
440  distFrom[1] = DistanceAway( p, true, distOut2[1], edgeRZnorm+1 );
441 
442  dist2[0] = distFrom[0]*distFrom[0] + distOut2[0];
443  dist2[1] = distFrom[1]*distFrom[1] + distOut2[1];
444 
445  //
446  // Who's closest?
447  //
448  G4int i = std::fabs(dist2[0]) < std::fabs(dist2[1]) ? 0 : 1;
449 
450  *bestDistance = std::sqrt( dist2[i] );
451 
452  //
453  // Okay then, inside or out?
454  //
455  if ( (std::fabs(edgeRZnorm[i]) < tolerance)
456  && (distOut2[i] < tolerance*tolerance) )
457  return kSurface;
458  else if (edgeRZnorm[i] < 0)
459  return kInside;
460  else
461  return kOutside;
462 }
463 
464 
465 //
466 // Normal
467 //
469  G4double *bestDistance )
470 {
471  if (p == G4ThreeVector(0.,0.,0.)) { return p; }
472 
473  G4double dFrom, dOut2;
474 
475  dFrom = DistanceAway( p, false, dOut2 );
476 
477  *bestDistance = std::sqrt( dFrom*dFrom + dOut2 );
478 
479  G4double rds = p.perp();
480  if (rds!=0.) { return G4ThreeVector(rNorm*p.x()/rds,rNorm*p.y()/rds,zNorm); }
481  return G4ThreeVector( 0.,0., zNorm ).unit();
482 }
483 
484 
485 //
486 // Extent
487 //
489 {
490  if (axis.perp2() < DBL_MIN)
491  {
492  //
493  // Special case
494  //
495  return axis.z() < 0 ? -cone->ZLo() : cone->ZHi();
496  }
497 
498  //
499  // Is the axis pointing inside our phi gap?
500  //
501  if (phiIsOpen)
502  {
503  G4double phi = GetPhi(axis);
504  while( phi < startPhi ) phi += twopi;
505 
506  if (phi > deltaPhi+startPhi)
507  {
508  //
509  // Yeah, looks so. Make four three vectors defining the phi
510  // opening
511  //
512  G4double cosP = std::cos(startPhi), sinP = std::sin(startPhi);
513  G4ThreeVector a( r[0]*cosP, r[0]*sinP, z[0] );
514  G4ThreeVector b( r[1]*cosP, r[1]*sinP, z[1] );
515  cosP = std::cos(startPhi+deltaPhi); sinP = std::sin(startPhi+deltaPhi);
516  G4ThreeVector c( r[0]*cosP, r[0]*sinP, z[0] );
517  G4ThreeVector d( r[1]*cosP, r[1]*sinP, z[1] );
518 
519  G4double ad = axis.dot(a),
520  bd = axis.dot(b),
521  cd = axis.dot(c),
522  dd = axis.dot(d);
523 
524  if (bd > ad) ad = bd;
525  if (cd > ad) ad = cd;
526  if (dd > ad) ad = dd;
527 
528  return ad;
529  }
530  }
531 
532  //
533  // Check either end
534  //
535  G4double aPerp = axis.perp();
536 
537  G4double a = aPerp*r[0] + axis.z()*z[0];
538  G4double b = aPerp*r[1] + axis.z()*z[1];
539 
540  if (b > a) a = b;
541 
542  return a;
543 }
544 
545 
546 
547 //
548 // CalculateExtent
549 //
550 // See notes in G4VCSGface
551 //
553  const G4VoxelLimits &voxelLimit,
554  const G4AffineTransform &transform,
555  G4SolidExtentList &extentList )
556 {
557  G4ClippablePolygon polygon;
558 
559  //
560  // Here we will approximate (ala G4Cons) and divide our conical section
561  // into segments, like G4Polyhedra. When doing so, the radius
562  // is extented far enough such that the segments always lie
563  // just outside the surface of the conical section we are
564  // approximating.
565  //
566 
567  //
568  // Choose phi size of our segment(s) based on constants as
569  // defined in meshdefs.hh
570  //
571  G4int numPhi = (G4int)(deltaPhi/kMeshAngleDefault) + 1;
572  if (numPhi < kMinMeshSections)
573  numPhi = kMinMeshSections;
574  else if (numPhi > kMaxMeshSections)
575  numPhi = kMaxMeshSections;
576 
577  G4double sigPhi = deltaPhi/numPhi;
578 
579  //
580  // Determine radius factor to keep segments outside
581  //
582  G4double rFudge = 1.0/std::cos(0.5*sigPhi);
583 
584  //
585  // Decide which radius to use on each end of the side,
586  // and whether a transition mesh is required
587  //
588  // {r0,z0} - Beginning of this side
589  // {r1,z1} - Ending of this side
590  // {r2,z0} - Beginning of transition piece connecting previous
591  // side (and ends at beginning of this side)
592  //
593  // So, order is 2 --> 0 --> 1.
594  // -------
595  //
596  // r2 < 0 indicates that no transition piece is required
597  //
598  G4double r0, r1, r2, z0, z1;
599 
600  r2 = -1; // By default: no transition piece
601 
602  if (rNorm < -DBL_MIN)
603  {
604  //
605  // This side faces *inward*, and so our mesh has
606  // the same radius
607  //
608  r1 = r[1];
609  z1 = z[1];
610  z0 = z[0];
611  r0 = r[0];
612 
613  r2 = -1;
614 
615  if (prevZS > DBL_MIN)
616  {
617  //
618  // The previous side is facing outwards
619  //
620  if ( prevRS*zS - prevZS*rS > 0 )
621  {
622  //
623  // Transition was convex: build transition piece
624  //
625  if (r[0] > DBL_MIN) r2 = r[0]*rFudge;
626  }
627  else
628  {
629  //
630  // Transition was concave: short this side
631  //
632  FindLineIntersect( z0, r0, zS, rS,
633  z0, r0*rFudge, prevZS, prevRS*rFudge, z0, r0 );
634  }
635  }
636 
637  if ( nextZS > DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
638  {
639  //
640  // The next side is facing outwards, forming a
641  // concave transition: short this side
642  //
643  FindLineIntersect( z1, r1, zS, rS,
644  z1, r1*rFudge, nextZS, nextRS*rFudge, z1, r1 );
645  }
646  }
647  else if (rNorm > DBL_MIN)
648  {
649  //
650  // This side faces *outward* and is given a boost to
651  // it radius
652  //
653  r0 = r[0]*rFudge;
654  z0 = z[0];
655  r1 = r[1]*rFudge;
656  z1 = z[1];
657 
658  if (prevZS < -DBL_MIN)
659  {
660  //
661  // The previous side is facing inwards
662  //
663  if ( prevRS*zS - prevZS*rS > 0 )
664  {
665  //
666  // Transition was convex: build transition piece
667  //
668  if (r[0] > DBL_MIN) r2 = r[0];
669  }
670  else
671  {
672  //
673  // Transition was concave: short this side
674  //
675  FindLineIntersect( z0, r0, zS, rS*rFudge,
676  z0, r[0], prevZS, prevRS, z0, r0 );
677  }
678  }
679 
680  if ( nextZS < -DBL_MIN && (rS*nextZS - zS*nextRS < 0) )
681  {
682  //
683  // The next side is facing inwards, forming a
684  // concave transition: short this side
685  //
686  FindLineIntersect( z1, r1, zS, rS*rFudge,
687  z1, r[1], nextZS, nextRS, z1, r1 );
688  }
689  }
690  else
691  {
692  //
693  // This side is perpendicular to the z axis (is a disk)
694  //
695  // Whether or not r0 needs a rFudge factor depends
696  // on the normal of the previous edge. Similar with r1
697  // and the next edge. No transition piece is required.
698  //
699  r0 = r[0];
700  r1 = r[1];
701  z0 = z[0];
702  z1 = z[1];
703 
704  if (prevZS > DBL_MIN) r0 *= rFudge;
705  if (nextZS > DBL_MIN) r1 *= rFudge;
706  }
707 
708  //
709  // Loop
710  //
711  G4double phi = startPhi,
712  cosPhi = std::cos(phi),
713  sinPhi = std::sin(phi);
714 
715  G4ThreeVector v0( r0*cosPhi, r0*sinPhi, z0 ),
716  v1( r1*cosPhi, r1*sinPhi, z1 ),
717  v2, w0, w1, w2;
718  transform.ApplyPointTransform( v0 );
719  transform.ApplyPointTransform( v1 );
720 
721  if (r2 >= 0)
722  {
723  v2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
724  transform.ApplyPointTransform( v2 );
725  }
726 
727  do
728  {
729  phi += sigPhi;
730  if (numPhi == 1) phi = startPhi+deltaPhi; // Try to avoid roundoff
731  cosPhi = std::cos(phi),
732  sinPhi = std::sin(phi);
733 
734  w0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z0 );
735  w1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z1 );
736  transform.ApplyPointTransform( w0 );
737  transform.ApplyPointTransform( w1 );
738 
739  G4ThreeVector deltaV = r0 > r1 ? w0-v0 : w1-v1;
740 
741  //
742  // Build polygon, taking special care to keep the vertices
743  // in order
744  //
745  polygon.ClearAllVertices();
746 
747  polygon.AddVertexInOrder( v0 );
748  polygon.AddVertexInOrder( v1 );
749  polygon.AddVertexInOrder( w1 );
750  polygon.AddVertexInOrder( w0 );
751 
752  //
753  // Get extent
754  //
755  if (polygon.PartialClip( voxelLimit, axis ))
756  {
757  //
758  // Get dot product of normal with target axis
759  //
760  polygon.SetNormal( deltaV.cross(v1-v0).unit() );
761 
762  extentList.AddSurface( polygon );
763  }
764 
765  if (r2 >= 0)
766  {
767  //
768  // Repeat, for transition piece
769  //
770  w2 = G4ThreeVector( r2*cosPhi, r2*sinPhi, z0 );
771  transform.ApplyPointTransform( w2 );
772 
773  polygon.ClearAllVertices();
774 
775  polygon.AddVertexInOrder( v2 );
776  polygon.AddVertexInOrder( v0 );
777  polygon.AddVertexInOrder( w0 );
778  polygon.AddVertexInOrder( w2 );
779 
780  if (polygon.PartialClip( voxelLimit, axis ))
781  {
782  polygon.SetNormal( deltaV.cross(v0-v2).unit() );
783 
784  extentList.AddSurface( polygon );
785  }
786 
787  v2 = w2;
788  }
789 
790  //
791  // Next vertex
792  //
793  v0 = w0;
794  v1 = w1;
795  } while( --numPhi > 0 );
796 
797  //
798  // We are almost done. But, it is important that we leave no
799  // gaps in the surface of our solid. By using rFudge, however,
800  // we've done exactly that, if we have a phi segment.
801  // Add two additional faces if necessary
802  //
803  if (phiIsOpen && rNorm > DBL_MIN)
804  {
805  cosPhi = std::cos(startPhi);
806  sinPhi = std::sin(startPhi);
807 
808  G4ThreeVector a0( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
809  a1( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
810  b0( r0*cosPhi, r0*sinPhi, z[0] ),
811  b1( r1*cosPhi, r1*sinPhi, z[1] );
812 
813  transform.ApplyPointTransform( a0 );
814  transform.ApplyPointTransform( a1 );
815  transform.ApplyPointTransform( b0 );
816  transform.ApplyPointTransform( b1 );
817 
818  polygon.ClearAllVertices();
819 
820  polygon.AddVertexInOrder( a0 );
821  polygon.AddVertexInOrder( a1 );
822  polygon.AddVertexInOrder( b0 );
823  polygon.AddVertexInOrder( b1 );
824 
825  if (polygon.PartialClip( voxelLimit , axis))
826  {
827  G4ThreeVector normal( sinPhi, -cosPhi, 0 );
828  polygon.SetNormal( transform.TransformAxis( normal ) );
829 
830  extentList.AddSurface( polygon );
831  }
832 
833  cosPhi = std::cos(startPhi+deltaPhi);
834  sinPhi = std::sin(startPhi+deltaPhi);
835 
836  a0 = G4ThreeVector( r[0]*cosPhi, r[0]*sinPhi, z[0] ),
837  a1 = G4ThreeVector( r[1]*cosPhi, r[1]*sinPhi, z[1] ),
838  b0 = G4ThreeVector( r0*cosPhi, r0*sinPhi, z[0] ),
839  b1 = G4ThreeVector( r1*cosPhi, r1*sinPhi, z[1] );
840  transform.ApplyPointTransform( a0 );
841  transform.ApplyPointTransform( a1 );
842  transform.ApplyPointTransform( b0 );
843  transform.ApplyPointTransform( b1 );
844 
845  polygon.ClearAllVertices();
846 
847  polygon.AddVertexInOrder( a0 );
848  polygon.AddVertexInOrder( a1 );
849  polygon.AddVertexInOrder( b0 );
850  polygon.AddVertexInOrder( b1 );
851 
852  if (polygon.PartialClip( voxelLimit, axis ))
853  {
854  G4ThreeVector normal( -sinPhi, cosPhi, 0 );
855  polygon.SetNormal( transform.TransformAxis( normal ) );
856 
857  extentList.AddSurface( polygon );
858  }
859  }
860 
861  return;
862 }
863 
864 //
865 // GetPhi
866 //
867 // Calculate Phi for a given 3-vector (point), if not already cached for the
868 // same point, in the attempt to avoid consecutive computation of the same
869 // quantity
870 //
872 {
873  G4double val=0.;
874 
875  if (fPhi.first != p)
876  {
877  val = p.phi();
878  fPhi.first = p;
879  fPhi.second = val;
880  }
881  else
882  {
883  val = fPhi.second;
884  }
885  return val;
886 }
887 
888 //
889 // DistanceAway
890 //
891 // Calculate distance of a point from our conical surface, including the effect
892 // of any phi segmentation
893 //
894 // Arguments:
895 // p - (in) Point to check
896 // opposite - (in) If true, check opposite hemisphere (see below)
897 // distOutside - (out) Additional distance outside the edges of the surface
898 // edgeRZnorm - (out) if negative, point is inside
899 //
900 // return value = distance from the conical plane, if extrapolated beyond edges,
901 // signed by whether the point is in inside or outside the shape
902 //
903 // Notes:
904 // * There are two answers, depending on which hemisphere is considered.
905 //
907  G4bool opposite,
908  G4double &distOutside2,
909  G4double *edgeRZnorm )
910 {
911  //
912  // Convert our point to r and z
913  //
914  G4double rx = p.perp(), zx = p.z();
915 
916  //
917  // Change sign of r if opposite says we should
918  //
919  if (opposite) rx = -rx;
920 
921  //
922  // Calculate return value
923  //
924  G4double deltaR = rx - r[0], deltaZ = zx - z[0];
925  G4double answer = deltaR*rNorm + deltaZ*zNorm;
926 
927  //
928  // Are we off the surface in r,z space?
929  //
930  G4double q = deltaR*rS + deltaZ*zS;
931  if (q < 0)
932  {
933  distOutside2 = q*q;
934  if (edgeRZnorm) *edgeRZnorm = deltaR*rNormEdge[0] + deltaZ*zNormEdge[0];
935  }
936  else if (q > length)
937  {
938  distOutside2 = sqr( q-length );
939  if (edgeRZnorm)
940  {
941  deltaR = rx - r[1];
942  deltaZ = zx - z[1];
943  *edgeRZnorm = deltaR*rNormEdge[1] + deltaZ*zNormEdge[1];
944  }
945  }
946  else
947  {
948  distOutside2 = 0;
949  if (edgeRZnorm) *edgeRZnorm = answer;
950  }
951 
952  if (phiIsOpen)
953  {
954  //
955  // Finally, check phi
956  //
957  G4double phi = GetPhi(p);
958  while( phi < startPhi ) phi += twopi;
959 
960  if (phi > startPhi+deltaPhi)
961  {
962  //
963  // Oops. Are we closer to the start phi or end phi?
964  //
965  G4double d1 = phi-startPhi-deltaPhi;
966  while( phi > startPhi ) phi -= twopi;
967  G4double d2 = startPhi-phi;
968 
969  if (d2 < d1) d1 = d2;
970 
971  //
972  // Add result to our distance
973  //
974  G4double dist = d1*rx;
975 
976  distOutside2 += dist*dist;
977  if (edgeRZnorm)
978  {
979  *edgeRZnorm = std::max(std::fabs(*edgeRZnorm),std::fabs(dist));
980  }
981  }
982  }
983 
984  return answer;
985 }
986 
987 
988 //
989 // PointOnCone
990 //
991 // Decide if a point is on a cone and return normal if it is
992 //
994  G4double normSign,
995  const G4ThreeVector &p,
996  const G4ThreeVector &v,
997  G4ThreeVector &normal )
998 {
999  G4double rx = hit.perp();
1000  //
1001  // Check radial/z extent, as appropriate
1002  //
1003  if (!cone->HitOn( rx, hit.z() )) return false;
1004 
1005  if (phiIsOpen)
1006  {
1007  G4double phiTolerant = 2.0*kCarTolerance/(rx+kCarTolerance);
1008  //
1009  // Check phi segment. Here we have to be careful
1010  // to use the standard method consistent with
1011  // PolyPhiFace. See PolyPhiFace::InsideEdgesExact
1012  //
1013  G4double phi = GetPhi(hit);
1014  while( phi < startPhi-phiTolerant ) phi += twopi;
1015 
1016  if (phi > startPhi+deltaPhi+phiTolerant) return false;
1017 
1018  if (phi > startPhi+deltaPhi-phiTolerant)
1019  {
1020  //
1021  // Exact treatment
1022  //
1023  G4ThreeVector qx = p + v;
1024  G4ThreeVector qa = qx - corners[2],
1025  qb = qx - corners[3];
1026  G4ThreeVector qacb = qa.cross(qb);
1027 
1028  if (normSign*qacb.dot(v) < 0) return false;
1029  }
1030  else if (phi < phiTolerant)
1031  {
1032  G4ThreeVector qx = p + v;
1033  G4ThreeVector qa = qx - corners[1],
1034  qb = qx - corners[0];
1035  G4ThreeVector qacb = qa.cross(qb);
1036 
1037  if (normSign*qacb.dot(v) < 0) return false;
1038  }
1039  }
1040 
1041  //
1042  // We have a good hit! Calculate normal
1043  //
1044  if (rx < DBL_MIN)
1045  normal = G4ThreeVector( 0, 0, zNorm < 0 ? -1 : 1 );
1046  else
1047  normal = G4ThreeVector( rNorm*hit.x()/rx, rNorm*hit.y()/rx, zNorm );
1048  return true;
1049 }
1050 
1051 
1052 //
1053 // FindLineIntersect
1054 //
1055 // Decide the point at which two 2-dimensional lines intersect
1056 //
1057 // Equation of line: x = x1 + s*tx1
1058 // y = y1 + s*ty1
1059 //
1060 // It is assumed that the lines are *not* parallel
1061 //
1063  G4double tx1, G4double ty1,
1065  G4double tx2, G4double ty2,
1066  G4double &x, G4double &y )
1067 {
1068  //
1069  // The solution is a simple linear equation
1070  //
1071  G4double deter = tx1*ty2 - tx2*ty1;
1072 
1073  G4double s1 = ((x2-x1)*ty2 - tx2*(y2-y1))/deter;
1074  G4double s2 = ((x2-x1)*ty1 - tx1*(y2-y1))/deter;
1075 
1076  //
1077  // We want the answer to not depend on which order the
1078  // lines were specified. Take average.
1079  //
1080  x = 0.5*( x1+s1*tx1 + x2+s2*tx2 );
1081  y = 0.5*( y1+s1*ty1 + y2+s2*ty2 );
1082 }
1083 
1084 //
1085 // Calculate surface area for GetPointOnSurface()
1086 //
1088 {
1089  if(fSurfaceArea==0)
1090  {
1091  fSurfaceArea = (r[0]+r[1])* std::sqrt(sqr(r[0]-r[1])+sqr(z[0]-z[1]));
1092  fSurfaceArea *= 0.5*(deltaPhi);
1093  }
1094  return fSurfaceArea;
1095 }
1096 
1097 //
1098 // GetPointOnFace
1099 //
1101 {
1102  G4double x,y,zz;
1103  G4double rr,phi,dz,dr;
1104  dr=r[1]-r[0];dz=z[1]-z[0];
1106  rr=r[0]+dr*G4UniformRand();
1107 
1108  x=rr*std::cos(phi);
1109  y=rr*std::sin(phi);
1110 
1111  // PolyconeSide has a Ring Form
1112  //
1113  if (dz==0.)
1114  {
1115  zz=z[0];
1116  }
1117  else
1118  {
1119  if(dr==0.) // PolyconeSide has a Tube Form
1120  {
1121  zz = z[0]+dz*G4UniformRand();
1122  }
1123  else
1124  {
1125  zz = z[0]+(rr-r[0])*dz/dr;
1126  }
1127  }
1128 
1129  return G4ThreeVector(x,y,zz);
1130 }