79       G4cout << 
"G4LEnp:ApplyYourself: incident particle: " 
   82              << 
", Px = " << Px/
GeV << 
" GeV/c" 
   83              << 
", Py = " << Py/
GeV << 
" GeV/c" 
   84              << 
", Pz = " << Pz/
GeV << 
" GeV/c" << 
G4endl;
 
   86              << 
", kinetic energy = " << ek/
GeV << 
" GeV" 
   87              << 
", mass = " << E0/
GeV << 
" GeV" 
   88              << 
", charge = " << Q << 
G4endl;
 
  100       E0 = std::sqrt(std::abs(E02));
 
  101       if (E02 < 0)E0 *= -1;
 
  105              << 
", mass = " << E0/
GeV << 
" GeV" 
  106              << 
", charge = " << Q << 
G4endl;
 
  112     G4int je2 = NENERGY - 1;
 
  115       G4int midBin = (je1 + je2)/2;
 
  116       if (ek < elab[midBin])
 
  120     } 
while (je2 - je1 > 1); 
 
  121     G4double delab = elab[je2] - elab[je1];
 
  127     G4int ke2 = NANGLE - 1;
 
  128     G4double dsig = sig[je2][0] - sig[je1][0];
 
  136          << ke1 << 
" " << ke2 << 
" "  
  137          << sigint1 << 
" " << sigint2 << 
G4endl;
 
  140       G4int midBin = (ke1 + ke2)/2;
 
  141       dsig = sig[je2][midBin] - sig[je1][midBin];
 
  143       b = sig[je1][midBin] - rc*elab[je1];
 
  145       if (sample < sigint) {
 
  154     G4cout << ke1 << 
" " << ke2 << 
" "  
  155            << sigint1 << 
" " << sigint2 << 
G4endl;
 
  157     } 
while (ke2 - ke1 > 1); 
 
  159     dsig = sigint2 - sigint1;
 
  161     b = ke1 - rc*sigint1;
 
  166       G4cout << 
"   energy bin " << je1 << 
" energy=" << elab[je1] << 
G4endl;
 
  179     G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
 
  186     G4double p = std::sqrt(px*px + py*py + pz*pz);
 
  191       G4cout << 
"  particle  1 momentum in CM " << px/
GeV << 
" " << py/
GeV << 
" " 
  197     G4double pxnew = p*std::sin(theta)*std::cos(phi);
 
  198     G4double pynew = p*std::sin(theta)*std::sin(phi);
 
  202     if (px*px + py*py > 0) {
 
  203       G4double cost, sint, ph, cosp, sinp;
 
  205       sint = (std::sqrt(std::fabs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/
p)/2;
 
  207       if (std::abs(px) > 0.000001*
GeV) ph = std::atan2(py,px);
 
  210       px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
 
  211       py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
 
  212       pz = (-sint*pxnew                  + cost*pznew);
 
  222       G4cout << 
"  particle 1 momentum in CM " << px/
GeV << 
" " << py/
GeV << 
" " 
  233     G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
 
  236       G4cout << 
"  betaCM " << betaCMx << 
" " << betaCMy << 
" " 
  237              << betaCMz << 
" " << betaCM << 
G4endl;
 
  254     PA[4] = std::sqrt(M1*M1 + p*p);
 
  256     G4double BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
 
  257     G4double BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
 
  259     PB[1] = PA[1] + BPGAM  * BETA[1];
 
  260     PB[2] = PA[2] + BPGAM  * BETA[2];
 
  261     PB[3] = PA[3] + BPGAM  * BETA[3];
 
  262     PB[4] = (PA[4] - BETPA) * BETA[4];
 
  273     PA[4] = std::sqrt(M2*M2 + p*p);
 
  275     BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
 
  276     BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
 
  278     PB[1] = PA[1] + BPGAM  * BETA[1];
 
  279     PB[2] = PA[2] + BPGAM  * BETA[2];
 
  280     PB[3] = PA[3] + BPGAM  * BETA[3];
 
  281     PB[4] = (PA[4] - BETPA) * BETA[4];
 
  286       G4cout << 
"  particle 1 momentum in LAB "  
  289       G4cout << 
"  particle 2 momentum in LAB "  
  292       G4cout << 
"  TOTAL momentum in LAB "