Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4GlauberGribovCrossSection.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // author: V. Grichine
27 //
28 // 17.07.06 V. Grichine - first implementation
29 // 22.01.07 V.Ivanchenko - add interface with Z and A
30 // 05.03.07 V.Ivanchenko - add IfZAApplicable
31 // 11.06.10 V. Grichine - update for antiprotons
32 // 10.11.11 V. Grichine - update for kaons
33 
35 
36 #include "G4PhysicalConstants.hh"
37 #include "G4SystemOfUnits.hh"
38 #include "G4ParticleTable.hh"
39 #include "G4IonTable.hh"
40 #include "G4ParticleDefinition.hh"
41 #include "G4HadronNucleonXsc.hh"
42 
43 // factory
44 #include "G4CrossSectionFactory.hh"
45 //
47 
49 
50 const G4double G4GlauberGribovCrossSection::fNeutronBarCorrectionTot[93] = {
51 
52 1.0, 1.0, 1.118517e+00, 1.082002e+00, 1.116171e+00, 1.078747e+00, 1.061315e+00,
53 1.058205e+00, 1.082663e+00, 1.068500e+00, 1.076912e+00, 1.083475e+00, 1.079117e+00,
54 1.071856e+00, 1.071990e+00, 1.073774e+00, 1.079356e+00, 1.081314e+00, 1.082056e+00,
55 1.090772e+00, 1.096776e+00, 1.095828e+00, 1.097678e+00, 1.099157e+00, 1.103677e+00,
56 1.105132e+00, 1.109806e+00, 1.110816e+00, 1.117378e+00, 1.115165e+00, 1.115710e+00,
57 1.111855e+00, 1.110482e+00, 1.110112e+00, 1.106676e+00, 1.108706e+00, 1.105549e+00,
58 1.106318e+00, 1.106242e+00, 1.107672e+00, 1.107342e+00, 1.108119e+00, 1.106655e+00,
59 1.102588e+00, 1.096657e+00, 1.092920e+00, 1.086629e+00, 1.083592e+00, 1.076030e+00,
60 1.083777e+00, 1.089460e+00, 1.086545e+00, 1.079924e+00, 1.082218e+00, 1.077798e+00,
61 1.077062e+00, 1.072825e+00, 1.072241e+00, 1.072104e+00, 1.072490e+00, 1.069829e+00,
62 1.070398e+00, 1.065458e+00, 1.064968e+00, 1.060524e+00, 1.060048e+00, 1.057620e+00,
63 1.056428e+00, 1.055366e+00, 1.055017e+00, 1.052304e+00, 1.051767e+00, 1.049728e+00,
64 1.048745e+00, 1.047399e+00, 1.045876e+00, 1.042972e+00, 1.041824e+00, 1.039993e+00,
65 1.039021e+00, 1.036627e+00, 1.034176e+00, 1.032526e+00, 1.033633e+00, 1.036107e+00,
66 1.037803e+00, 1.031266e+00, 1.032991e+00, 1.033284e+00, 1.035015e+00, 1.033945e+00,
67 1.037075e+00, 1.034721e+00
68 
69 };
70 
71 const G4double G4GlauberGribovCrossSection::fNeutronBarCorrectionIn[93] = {
72 
73 1.0, 1.0, 1.167421e+00, 1.156250e+00, 1.205364e+00, 1.154225e+00, 1.120391e+00,
74 1.124632e+00, 1.129460e+00, 1.107863e+00, 1.102152e+00, 1.104593e+00, 1.100285e+00,
75 1.098450e+00, 1.092677e+00, 1.101124e+00, 1.106461e+00, 1.115049e+00, 1.123903e+00,
76 1.126661e+00, 1.131259e+00, 1.133949e+00, 1.134185e+00, 1.133767e+00, 1.132813e+00,
77 1.131515e+00, 1.130338e+00, 1.134171e+00, 1.139206e+00, 1.141474e+00, 1.142189e+00,
78 1.140725e+00, 1.140100e+00, 1.139848e+00, 1.137674e+00, 1.138645e+00, 1.136339e+00,
79 1.136439e+00, 1.135946e+00, 1.136431e+00, 1.135702e+00, 1.135703e+00, 1.134113e+00,
80 1.131935e+00, 1.128381e+00, 1.126373e+00, 1.122453e+00, 1.120908e+00, 1.115953e+00,
81 1.115947e+00, 1.114426e+00, 1.111749e+00, 1.106207e+00, 1.107494e+00, 1.103622e+00,
82 1.102576e+00, 1.098816e+00, 1.097889e+00, 1.097306e+00, 1.097130e+00, 1.094578e+00,
83 1.094552e+00, 1.090222e+00, 1.089358e+00, 1.085409e+00, 1.084560e+00, 1.082182e+00,
84 1.080773e+00, 1.079464e+00, 1.078724e+00, 1.076121e+00, 1.075235e+00, 1.073159e+00,
85 1.071920e+00, 1.070395e+00, 1.069503e+00, 1.067525e+00, 1.066919e+00, 1.065779e+00,
86 1.065319e+00, 1.063730e+00, 1.062092e+00, 1.061085e+00, 1.059908e+00, 1.059815e+00,
87 1.059109e+00, 1.051920e+00, 1.051258e+00, 1.049473e+00, 1.048823e+00, 1.045984e+00,
88 1.046435e+00, 1.042614e+00
89 
90 };
91 
92 const G4double G4GlauberGribovCrossSection::fProtonBarCorrectionTot[93] = {
93 
94 1.0, 1.0,
95 1.118515e+00, 1.082000e+00, 1.116169e+00, 1.078745e+00, 1.061313e+00, 1.058203e+00,
96 1.082661e+00, 1.068498e+00, 1.076910e+00, 1.083474e+00, 1.079115e+00, 1.071854e+00,
97 1.071988e+00, 1.073772e+00, 1.079355e+00, 1.081312e+00, 1.082054e+00, 1.090770e+00,
98 1.096774e+00, 1.095827e+00, 1.097677e+00, 1.099156e+00, 1.103676e+00, 1.105130e+00,
99 1.109805e+00, 1.110814e+00, 1.117377e+00, 1.115163e+00, 1.115708e+00, 1.111853e+00,
100 1.110480e+00, 1.110111e+00, 1.106674e+00, 1.108705e+00, 1.105548e+00, 1.106317e+00,
101 1.106241e+00, 1.107671e+00, 1.107341e+00, 1.108118e+00, 1.106654e+00, 1.102586e+00,
102 1.096655e+00, 1.092918e+00, 1.086628e+00, 1.083590e+00, 1.076028e+00, 1.083776e+00,
103 1.089458e+00, 1.086543e+00, 1.079923e+00, 1.082216e+00, 1.077797e+00, 1.077061e+00,
104 1.072824e+00, 1.072239e+00, 1.072103e+00, 1.072488e+00, 1.069828e+00, 1.070396e+00,
105 1.065456e+00, 1.064966e+00, 1.060523e+00, 1.060047e+00, 1.057618e+00, 1.056427e+00,
106 1.055365e+00, 1.055016e+00, 1.052303e+00, 1.051766e+00, 1.049727e+00, 1.048743e+00,
107 1.047397e+00, 1.045875e+00, 1.042971e+00, 1.041823e+00, 1.039992e+00, 1.039019e+00,
108 1.036626e+00, 1.034175e+00, 1.032525e+00, 1.033632e+00, 1.036106e+00, 1.037802e+00,
109 1.031265e+00, 1.032990e+00, 1.033283e+00, 1.035014e+00, 1.033944e+00, 1.037074e+00,
110 1.034720e+00
111 
112 };
113 
114 const G4double G4GlauberGribovCrossSection::fProtonBarCorrectionIn[93] = {
115 
116 1.0, 1.0,
117 1.167419e+00, 1.156248e+00, 1.205362e+00, 1.154224e+00, 1.120390e+00, 1.124630e+00,
118 1.129459e+00, 1.107861e+00, 1.102151e+00, 1.104591e+00, 1.100284e+00, 1.098449e+00,
119 1.092675e+00, 1.101122e+00, 1.106460e+00, 1.115048e+00, 1.123902e+00, 1.126659e+00,
120 1.131258e+00, 1.133948e+00, 1.134183e+00, 1.133766e+00, 1.132812e+00, 1.131514e+00,
121 1.130337e+00, 1.134170e+00, 1.139205e+00, 1.141472e+00, 1.142188e+00, 1.140724e+00,
122 1.140099e+00, 1.139847e+00, 1.137672e+00, 1.138644e+00, 1.136338e+00, 1.136438e+00,
123 1.135945e+00, 1.136429e+00, 1.135701e+00, 1.135702e+00, 1.134112e+00, 1.131934e+00,
124 1.128380e+00, 1.126371e+00, 1.122452e+00, 1.120907e+00, 1.115952e+00, 1.115946e+00,
125 1.114425e+00, 1.111748e+00, 1.106205e+00, 1.107493e+00, 1.103621e+00, 1.102575e+00,
126 1.098815e+00, 1.097888e+00, 1.097305e+00, 1.097129e+00, 1.094577e+00, 1.094551e+00,
127 1.090221e+00, 1.089357e+00, 1.085408e+00, 1.084559e+00, 1.082181e+00, 1.080772e+00,
128 1.079463e+00, 1.078723e+00, 1.076120e+00, 1.075234e+00, 1.073158e+00, 1.071919e+00,
129 1.070394e+00, 1.069502e+00, 1.067524e+00, 1.066918e+00, 1.065778e+00, 1.065318e+00,
130 1.063729e+00, 1.062091e+00, 1.061084e+00, 1.059907e+00, 1.059814e+00, 1.059108e+00,
131 1.051919e+00, 1.051257e+00, 1.049472e+00, 1.048822e+00, 1.045983e+00, 1.046434e+00,
132 1.042613e+00
133 
134 };
135 
136 
137 const G4double G4GlauberGribovCrossSection::fPionPlusBarCorrectionTot[93] = {
138 
139 1.0, 1.0,
140 1.075927e+00, 1.074407e+00, 1.126098e+00, 1.100127e+00, 1.089742e+00, 1.083536e+00,
141 1.089988e+00, 1.103566e+00, 1.096922e+00, 1.126573e+00, 1.132734e+00, 1.136512e+00,
142 1.136629e+00, 1.133086e+00, 1.132428e+00, 1.129299e+00, 1.125622e+00, 1.126992e+00,
143 1.127840e+00, 1.162670e+00, 1.160392e+00, 1.157864e+00, 1.157227e+00, 1.154627e+00,
144 1.192555e+00, 1.197243e+00, 1.197911e+00, 1.200326e+00, 1.220053e+00, 1.215019e+00,
145 1.211703e+00, 1.209080e+00, 1.204248e+00, 1.203328e+00, 1.198671e+00, 1.196840e+00,
146 1.194392e+00, 1.193037e+00, 1.190408e+00, 1.188583e+00, 1.206127e+00, 1.210028e+00,
147 1.206434e+00, 1.204456e+00, 1.200547e+00, 1.199058e+00, 1.200174e+00, 1.200276e+00,
148 1.198912e+00, 1.213048e+00, 1.207160e+00, 1.208020e+00, 1.203814e+00, 1.202380e+00,
149 1.198306e+00, 1.197002e+00, 1.196027e+00, 1.195449e+00, 1.192563e+00, 1.192135e+00,
150 1.187556e+00, 1.186308e+00, 1.182124e+00, 1.180900e+00, 1.178224e+00, 1.176471e+00,
151 1.174811e+00, 1.173702e+00, 1.170827e+00, 1.169581e+00, 1.167205e+00, 1.165626e+00,
152 1.180244e+00, 1.177626e+00, 1.175121e+00, 1.173903e+00, 1.172192e+00, 1.171128e+00,
153 1.168997e+00, 1.166826e+00, 1.164130e+00, 1.165412e+00, 1.165504e+00, 1.165020e+00,
154 1.158462e+00, 1.158014e+00, 1.156519e+00, 1.156081e+00, 1.153602e+00, 1.154190e+00,
155 1.152974e+00
156 
157 };
158 
159 const G4double G4GlauberGribovCrossSection::fPionPlusBarCorrectionIn[93] = {
160 
161 1.0, 1.0,
162 1.140246e+00, 1.097872e+00, 1.104301e+00, 1.068722e+00, 1.044495e+00, 1.062622e+00,
163 1.047987e+00, 1.037032e+00, 1.035686e+00, 1.042870e+00, 1.052222e+00, 1.065100e+00,
164 1.070480e+00, 1.078286e+00, 1.081488e+00, 1.089713e+00, 1.099105e+00, 1.098003e+00,
165 1.102175e+00, 1.117707e+00, 1.121734e+00, 1.125229e+00, 1.126457e+00, 1.128905e+00,
166 1.137312e+00, 1.126263e+00, 1.126459e+00, 1.115191e+00, 1.116986e+00, 1.117184e+00,
167 1.117037e+00, 1.116777e+00, 1.115858e+00, 1.115745e+00, 1.114489e+00, 1.113993e+00,
168 1.113226e+00, 1.112818e+00, 1.111890e+00, 1.111238e+00, 1.111209e+00, 1.111775e+00,
169 1.110256e+00, 1.109414e+00, 1.107647e+00, 1.106980e+00, 1.106096e+00, 1.107331e+00,
170 1.107849e+00, 1.106407e+00, 1.103426e+00, 1.103896e+00, 1.101756e+00, 1.101031e+00,
171 1.098915e+00, 1.098260e+00, 1.097768e+00, 1.097487e+00, 1.095964e+00, 1.095773e+00,
172 1.093348e+00, 1.092687e+00, 1.090465e+00, 1.089821e+00, 1.088394e+00, 1.087462e+00,
173 1.086571e+00, 1.085997e+00, 1.084451e+00, 1.083798e+00, 1.082513e+00, 1.081670e+00,
174 1.080735e+00, 1.075659e+00, 1.074341e+00, 1.073689e+00, 1.072787e+00, 1.072237e+00,
175 1.071107e+00, 1.069955e+00, 1.064856e+00, 1.065873e+00, 1.065938e+00, 1.065694e+00,
176 1.062192e+00, 1.061967e+00, 1.061180e+00, 1.060960e+00, 1.059646e+00, 1.059975e+00,
177 1.059658e+00
178 
179 };
180 
181 
182 const G4double G4GlauberGribovCrossSection::fPionMinusBarCorrectionTot[93] = {
183 
184 1.0, 1.0,
185 1.075927e+00, 1.077959e+00, 1.129145e+00, 1.102088e+00, 1.089765e+00, 1.083542e+00,
186 1.089995e+00, 1.104895e+00, 1.097154e+00, 1.127663e+00, 1.133063e+00, 1.137425e+00,
187 1.136724e+00, 1.133859e+00, 1.132498e+00, 1.130276e+00, 1.127896e+00, 1.127656e+00,
188 1.127905e+00, 1.164210e+00, 1.162259e+00, 1.160075e+00, 1.158978e+00, 1.156649e+00,
189 1.194157e+00, 1.199177e+00, 1.198983e+00, 1.202325e+00, 1.221967e+00, 1.217548e+00,
190 1.214389e+00, 1.211760e+00, 1.207335e+00, 1.206081e+00, 1.201766e+00, 1.199779e+00,
191 1.197283e+00, 1.195706e+00, 1.193071e+00, 1.191115e+00, 1.208838e+00, 1.212681e+00,
192 1.209235e+00, 1.207163e+00, 1.203451e+00, 1.201807e+00, 1.203283e+00, 1.203388e+00,
193 1.202244e+00, 1.216509e+00, 1.211066e+00, 1.211504e+00, 1.207539e+00, 1.205991e+00,
194 1.202143e+00, 1.200724e+00, 1.199595e+00, 1.198815e+00, 1.196025e+00, 1.195390e+00,
195 1.191137e+00, 1.189791e+00, 1.185888e+00, 1.184575e+00, 1.181996e+00, 1.180229e+00,
196 1.178545e+00, 1.177355e+00, 1.174616e+00, 1.173312e+00, 1.171016e+00, 1.169424e+00,
197 1.184120e+00, 1.181478e+00, 1.179085e+00, 1.177817e+00, 1.176124e+00, 1.175003e+00,
198 1.172947e+00, 1.170858e+00, 1.168170e+00, 1.169397e+00, 1.169304e+00, 1.168706e+00,
199 1.162774e+00, 1.162217e+00, 1.160740e+00, 1.160196e+00, 1.157857e+00, 1.158220e+00,
200 1.157267e+00
201 };
202 
203 
204 const G4double G4GlauberGribovCrossSection::fPionMinusBarCorrectionIn[93] = {
205 
206 1.0, 1.0,
207 1.140246e+00, 1.100898e+00, 1.106773e+00, 1.070289e+00, 1.044514e+00, 1.062628e+00,
208 1.047992e+00, 1.038041e+00, 1.035862e+00, 1.043679e+00, 1.052466e+00, 1.065780e+00,
209 1.070551e+00, 1.078869e+00, 1.081541e+00, 1.090455e+00, 1.100847e+00, 1.098511e+00,
210 1.102226e+00, 1.118865e+00, 1.123143e+00, 1.126904e+00, 1.127785e+00, 1.130444e+00,
211 1.138502e+00, 1.127678e+00, 1.127244e+00, 1.116634e+00, 1.118347e+00, 1.118988e+00,
212 1.118957e+00, 1.118696e+00, 1.118074e+00, 1.117722e+00, 1.116717e+00, 1.116111e+00,
213 1.115311e+00, 1.114745e+00, 1.113814e+00, 1.113069e+00, 1.113141e+00, 1.113660e+00,
214 1.112249e+00, 1.111343e+00, 1.109718e+00, 1.108942e+00, 1.108310e+00, 1.109549e+00,
215 1.110227e+00, 1.108846e+00, 1.106183e+00, 1.106354e+00, 1.104388e+00, 1.103583e+00,
216 1.101632e+00, 1.100896e+00, 1.100296e+00, 1.099873e+00, 1.098420e+00, 1.098082e+00,
217 1.095892e+00, 1.095162e+00, 1.093144e+00, 1.092438e+00, 1.091083e+00, 1.090142e+00,
218 1.089236e+00, 1.088604e+00, 1.087159e+00, 1.086465e+00, 1.085239e+00, 1.084388e+00,
219 1.083473e+00, 1.078373e+00, 1.077136e+00, 1.076450e+00, 1.075561e+00, 1.074973e+00,
220 1.073898e+00, 1.072806e+00, 1.067706e+00, 1.068684e+00, 1.068618e+00, 1.068294e+00,
221 1.065241e+00, 1.064939e+00, 1.064166e+00, 1.063872e+00, 1.062659e+00, 1.062828e+00,
222 1.062699e+00
223 
224 };
225 
226 
228 //
229 
231  : G4VCrossSectionDataSet(Default_Name()),
232  fUpperLimit(100000*GeV), fLowerLimit(10.*MeV),// fLowerLimit(3*GeV),
233  fRadiusConst(1.08*fermi), // 1.1, 1.3 ?
234  fTotalXsc(0.0), fElasticXsc(0.0), fInelasticXsc(0.0), fProductionXsc(0.0),
235  fDiffractionXsc(0.0), fHadronNucleonXsc(0.0)
236 {
237  theGamma = G4Gamma::Gamma();
238  theProton = G4Proton::Proton();
239  theNeutron = G4Neutron::Neutron();
240  theAProton = G4AntiProton::AntiProton();
241  theANeutron = G4AntiNeutron::AntiNeutron();
242  thePiPlus = G4PionPlus::PionPlus();
243  thePiMinus = G4PionMinus::PionMinus();
244  thePiZero = G4PionZero::PionZero();
245  theKPlus = G4KaonPlus::KaonPlus();
246  theKMinus = G4KaonMinus::KaonMinus();
248  theK0L = G4KaonZeroLong::KaonZeroLong();
249  theL = G4Lambda::Lambda();
250  theAntiL = G4AntiLambda::AntiLambda();
251  theSPlus = G4SigmaPlus::SigmaPlus();
252  theASPlus = G4AntiSigmaPlus::AntiSigmaPlus();
253  theSMinus = G4SigmaMinus::SigmaMinus();
254  theASMinus = G4AntiSigmaMinus::AntiSigmaMinus();
255  theS0 = G4SigmaZero::SigmaZero();
257  theXiMinus = G4XiMinus::XiMinus();
258  theXi0 = G4XiZero::XiZero();
259  theAXiMinus = G4AntiXiMinus::AntiXiMinus();
260  theAXi0 = G4AntiXiZero::AntiXiZero();
261  theOmega = G4OmegaMinus::OmegaMinus();
262  theAOmega = G4AntiOmegaMinus::AntiOmegaMinus();
263  theD = G4Deuteron::Deuteron();
264  theT = G4Triton::Triton();
265  theA = G4Alpha::Alpha();
266  theHe3 = G4He3::He3();
267 
268  hnXsc = new G4HadronNucleonXsc();
269 }
270 
272 //
273 //
274 
276 {
277  if (hnXsc) delete hnXsc;
278 }
279 
281 
282 G4bool
284  G4int Z, G4int /*A*/,
285  const G4Element*,
286  const G4Material*)
287 {
288  G4bool applicable = false;
289  // G4int baryonNumber = aDP->GetDefinition()->GetBaryonNumber();
290  G4double kineticEnergy = aDP->GetKineticEnergy();
291 
292  const G4ParticleDefinition* theParticle = aDP->GetDefinition();
293 
294  if ( ( kineticEnergy >= fLowerLimit &&
295  Z > 1 && // >= He
296  ( theParticle == theAProton ||
297  theParticle == theGamma ||
298  theParticle == theKPlus ||
299  theParticle == theKMinus ||
300  theParticle == theK0L ||
301  theParticle == theK0S ||
302  theParticle == theSMinus ||
303  theParticle == theProton ||
304  theParticle == theNeutron ||
305  theParticle == thePiPlus ||
306  theParticle == thePiMinus ) ) ) applicable = true;
307 
308  return applicable;
309 }
310 
312 //
313 // Calculates total and inelastic Xsc, derives elastic as total - inelastic accordong to
314 // Glauber model with Gribov correction calculated in the dipole approximation on
315 // light cone. Gaussian density of point-like nucleons helps to calculate rest integrals of the model.
316 // [1] B.Z. Kopeliovich, nucl-th/0306044 + simplification above
317 
318 G4double
320  G4int Z, G4int A,
321  const G4Isotope*,
322  const G4Element*,
323  const G4Material*)
324 {
325  G4double xsection, sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
326  G4double hpInXsc(0.), hnInXsc(0.);
327  G4double R = GetNucleusRadius(A);
328 
329  G4int N = A - Z; // number of neutrons
330  if (N < 0) N = 0;
331 
332  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
333 
334  if( theParticle == theProton ||
335  theParticle == theNeutron ||
336  theParticle == thePiPlus ||
337  theParticle == thePiMinus )
338  {
339  // sigma = GetHadronNucleonXscNS(aParticle, A, Z);
340 
341  sigma = Z*hnXsc->GetHadronNucleonXscNS(aParticle, theProton);
342 
343  hpInXsc = hnXsc->GetInelasticHadronNucleonXsc();
344 
345  sigma += N*hnXsc->GetHadronNucleonXscNS(aParticle, theNeutron);
346 
347  hnInXsc = hnXsc->GetInelasticHadronNucleonXsc();
348 
349  cofInelastic = 2.4;
350  cofTotal = 2.0;
351  }
352  else if( theParticle == theKPlus ||
353  theParticle == theKMinus ||
354  theParticle == theK0S ||
355  theParticle == theK0L )
356  {
357  sigma = GetKaonNucleonXscVector(aParticle, A, Z);
358  cofInelastic = 2.2;
359  cofTotal = 2.0;
360  R = 1.3*fermi;
361  R *= std::pow(G4double(A), 0.3333);
362  }
363  else
364  {
365  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
366  cofInelastic = 2.2;
367  cofTotal = 2.0;
368  }
369  // cofInelastic = 2.0;
370 
371  if( A > 1 )
372  {
373  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
374  ratio = sigma/nucleusSquare;
375 
376  xsection = nucleusSquare*std::log( 1. + ratio );
377 
378  xsection *= GetParticleBarCorTot(theParticle, Z);
379 
380  fTotalXsc = xsection;
381 
382 
383 
384  fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
385 
386  fInelasticXsc *= GetParticleBarCorIn(theParticle, Z);
387 
388  fElasticXsc = fTotalXsc - fInelasticXsc;
389 
390  if(fElasticXsc < 0.) fElasticXsc = 0.;
391 
392  G4double difratio = ratio/(1.+ratio);
393 
394  fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
395 
396 
397  // sigma = GetHNinelasticXsc(aParticle, A, Z);
398 
399  sigma = Z*hpInXsc + N*hnInXsc;
400 
401  ratio = sigma/nucleusSquare;
402 
403  fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
404 
405  if (fElasticXsc < 0.) fElasticXsc = 0.;
406  }
407  else // H
408  {
409  fTotalXsc = sigma;
410  xsection = sigma;
411 
412  if ( theParticle != theAProton )
413  {
414  sigma = GetHNinelasticXsc(aParticle, A, Z);
415  fInelasticXsc = sigma;
416  fElasticXsc = fTotalXsc - fInelasticXsc;
417  }
418  else
419  {
420  fElasticXsc = fTotalXsc - fInelasticXsc;
421  }
422  if (fElasticXsc < 0.) fElasticXsc = 0.;
423 
424  }
425  return xsection;
426 }
427 
429 //
430 // Return single-diffraction/inelastic cross-section ratio
431 
433 GetRatioSD(const G4DynamicParticle* aParticle, G4int A, G4int Z)
434 {
435  G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
436  G4double R = GetNucleusRadius(A);
437 
438  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
439 
440  if( theParticle == theProton ||
441  theParticle == theNeutron ||
442  theParticle == thePiPlus ||
443  theParticle == thePiMinus )
444  {
445  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
446  cofInelastic = 2.4;
447  cofTotal = 2.0;
448  }
449  else
450  {
451  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
452  cofInelastic = 2.2;
453  cofTotal = 2.0;
454  }
455  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
456  ratio = sigma/nucleusSquare;
457 
458  fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
459 
460  G4double difratio = ratio/(1.+ratio);
461 
462  fDiffractionXsc = 0.5*nucleusSquare*( difratio - std::log( 1. + difratio ) );
463 
464  if (fInelasticXsc > 0.) ratio = fDiffractionXsc/fInelasticXsc;
465  else ratio = 0.;
466 
467  return ratio;
468 }
469 
471 //
472 // Return suasi-elastic/inelastic cross-section ratio
473 
475 GetRatioQE(const G4DynamicParticle* aParticle, G4int A, G4int Z)
476 {
477  G4double sigma, cofInelastic, cofTotal, nucleusSquare, ratio;
478  G4double R = GetNucleusRadius(A);
479 
480  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
481 
482  if( theParticle == theProton ||
483  theParticle == theNeutron ||
484  theParticle == thePiPlus ||
485  theParticle == thePiMinus )
486  {
487  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
488  cofInelastic = 2.4;
489  cofTotal = 2.0;
490  }
491  else
492  {
493  sigma = GetHadronNucleonXscNS(aParticle, A, Z);
494  cofInelastic = 2.2;
495  cofTotal = 2.0;
496  }
497  nucleusSquare = cofTotal*pi*R*R; // basically 2piRR
498  ratio = sigma/nucleusSquare;
499 
500  fInelasticXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
501 
502  sigma = GetHNinelasticXsc(aParticle, A, Z);
503  ratio = sigma/nucleusSquare;
504 
505  fProductionXsc = nucleusSquare*std::log( 1. + cofInelastic*ratio )/cofInelastic;
506 
507  if (fInelasticXsc > fProductionXsc) ratio = (fInelasticXsc-fProductionXsc)/fInelasticXsc;
508  else ratio = 0.;
509  if ( ratio < 0. ) ratio = 0.;
510 
511  return ratio;
512 }
513 
515 //
516 // Returns hadron-nucleon Xsc according to differnt parametrisations:
517 // [2] E. Levin, hep-ph/9710546
518 // [3] U. Dersch, et al, hep-ex/9910052
519 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
520 
521 G4double
523  const G4Element* anElement)
524 {
525  G4int At = G4lrint(anElement->GetN()); // number of nucleons
526  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
527 
528  return GetHadronNucleonXsc(aParticle, At, Zt);
529 }
530 
532 //
533 // Returns hadron-nucleon Xsc according to differnt parametrisations:
534 // [2] E. Levin, hep-ph/9710546
535 // [3] U. Dersch, et al, hep-ex/9910052
536 // [4] M.J. Longo, et al, Phys.Rev.Lett. 33 (1974) 725
537 
538 G4double
540  G4int At, G4int /*Zt*/)
541 {
542  G4double xsection;
543 
544  //G4double targ_mass = G4NucleiProperties::GetNuclearMass(At, Zt);
545 
546  G4double targ_mass = 0.939*GeV; // ~mean neutron and proton ???
547 
548  G4double proj_mass = aParticle->GetMass();
549  G4double proj_momentum = aParticle->GetMomentum().mag();
550  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
551 
552  sMand /= GeV*GeV; // in GeV for parametrisation
553  proj_momentum /= GeV;
554 
555  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
556 
557  G4double aa = At;
558 
559  if(theParticle == theGamma)
560  {
561  xsection = aa*(0.0677*std::pow(sMand,0.0808) + 0.129*std::pow(sMand,-0.4525));
562  }
563  else if(theParticle == theNeutron) // as proton ???
564  {
565  xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
566  }
567  else if(theParticle == theProton)
568  {
569  xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
570  // xsection = At*( 49.51*std::pow(sMand,-0.097) + 0.314*std::log(sMand)*std::log(sMand) );
571  // xsection = At*( 38.4 + 0.85*std::abs(std::pow(log(sMand),1.47)) );
572  }
573  else if(theParticle == theAProton)
574  {
575  xsection = aa*( 21.70*std::pow(sMand,0.0808) + 98.39*std::pow(sMand,-0.4525));
576  }
577  else if(theParticle == thePiPlus)
578  {
579  xsection = aa*(13.63*std::pow(sMand,0.0808) + 27.56*std::pow(sMand,-0.4525));
580  }
581  else if(theParticle == thePiMinus)
582  {
583  // xsection = At*( 55.2*std::pow(sMand,-0.255) + 0.346*std::log(sMand)*std::log(sMand) );
584  xsection = aa*(13.63*std::pow(sMand,0.0808) + 36.02*std::pow(sMand,-0.4525));
585  }
586  else if(theParticle == theKPlus)
587  {
588  xsection = aa*(11.82*std::pow(sMand,0.0808) + 8.15*std::pow(sMand,-0.4525));
589  }
590  else if(theParticle == theKMinus)
591  {
592  xsection = aa*(11.82*std::pow(sMand,0.0808) + 26.36*std::pow(sMand,-0.4525));
593  }
594  else // as proton ???
595  {
596  xsection = aa*(21.70*std::pow(sMand,0.0808) + 56.08*std::pow(sMand,-0.4525));
597  }
598  xsection *= millibarn;
599  return xsection;
600 }
601 
602 
604 //
605 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
606 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
607 
608 G4double
610  const G4Element* anElement)
611 {
612  G4int At = G4lrint(anElement->GetN()); // number of nucleons
613  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
614 
615  return GetHadronNucleonXscPDG(aParticle, At, Zt);
616 }
617 
618 
619 
620 
622 //
623 // Returns hadron-nucleon Xsc according to PDG parametrisation (2005):
624 // http://pdg.lbl.gov/2006/reviews/hadronicrpp.pdf
625 // At = number of nucleons, Zt = number of protons
626 
627 G4double
629  G4int At, G4int Zt)
630 {
631  G4double xsection;
632 
633  G4int Nt = At-Zt; // number of neutrons
634  if (Nt < 0) Nt = 0;
635 
636  G4double zz = Zt;
637  G4double aa = At;
638  G4double nn = Nt;
639 
641  GetIonTable()->GetIonMass(Zt, At);
642 
643  targ_mass = 0.939*GeV; // ~mean neutron and proton ???
644 
645  G4double proj_mass = aParticle->GetMass();
646  G4double proj_momentum = aParticle->GetMomentum().mag();
647 
648  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
649 
650  sMand /= GeV*GeV; // in GeV for parametrisation
651 
652  // General PDG fit constants
653 
654  G4double s0 = 5.38*5.38; // in Gev^2
655  G4double eta1 = 0.458;
656  G4double eta2 = 0.458;
657  G4double B = 0.308;
658 
659 
660  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
661 
662 
663  if(theParticle == theNeutron) // proton-neutron fit
664  {
665  xsection = zz*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
666  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
667  xsection += nn*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
668  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2)); // pp for nn
669  }
670  else if(theParticle == theProton)
671  {
672 
673  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
674  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
675 
676  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
677  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
678  }
679  else if(theParticle == theAProton)
680  {
681  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
682  + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
683 
684  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
685  + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
686  }
687  else if(theParticle == thePiPlus)
688  {
689  xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.)
690  + 19.24*std::pow(sMand,-eta1) - 6.03*std::pow(sMand,-eta2));
691  }
692  else if(theParticle == thePiMinus)
693  {
694  xsection = aa*( 20.86 + B*std::pow(std::log(sMand/s0),2.)
695  + 19.24*std::pow(sMand,-eta1) + 6.03*std::pow(sMand,-eta2));
696  }
697  else if(theParticle == theKPlus || theParticle == theK0L )
698  {
699  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
700  + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
701 
702  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
703  + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
704  }
705  else if(theParticle == theKMinus || theParticle == theK0S )
706  {
707  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
708  + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
709 
710  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
711  + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
712  }
713  else if(theParticle == theSMinus)
714  {
715  xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.)
716  - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
717  }
718  else if(theParticle == theGamma) // modify later on
719  {
720  xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.)
721  + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
722 
723  }
724  else // as proton ???
725  {
726  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
727  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
728 
729  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
730  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
731  }
732  xsection *= millibarn; // parametrised in mb
733  return xsection;
734 }
735 
736 
738 //
739 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
740 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
741 
742 G4double
744  const G4Element* anElement)
745 {
746  G4int At = G4lrint(anElement->GetN()); // number of nucleons
747  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
748 
749  return GetHadronNucleonXscNS(aParticle, At, Zt);
750 }
751 
752 
753 
754 
756 //
757 // Returns hadron-nucleon cross-section based on N. Starkov parametrisation of
758 // data from mainly http://wwwppds.ihep.su:8001/c5-6A.html database
759 
760 G4double
762  G4int At, G4int Zt)
763 {
764  G4double xsection(0);
765  // G4double Delta; DHW 19 May 2011: variable set but not used
766  G4double A0, B0;
767  G4double hpXscv(0);
768  G4double hnXscv(0);
769 
770  G4int Nt = At-Zt; // number of neutrons
771  if (Nt < 0) Nt = 0;
772 
773  G4double aa = At;
774  G4double zz = Zt;
775  G4double nn = Nt;
776 
778  GetIonTable()->GetIonMass(Zt, At);
779 
780  targ_mass = 0.939*GeV; // ~mean neutron and proton ???
781 
782  G4double proj_mass = aParticle->GetMass();
783  G4double proj_energy = aParticle->GetTotalEnergy();
784  G4double proj_momentum = aParticle->GetMomentum().mag();
785 
786  G4double sMand = CalcMandelstamS ( proj_mass , targ_mass , proj_momentum );
787 
788  sMand /= GeV*GeV; // in GeV for parametrisation
789  proj_momentum /= GeV;
790  proj_energy /= GeV;
791  proj_mass /= GeV;
792 
793  // General PDG fit constants
794 
795  G4double s0 = 5.38*5.38; // in Gev^2
796  G4double eta1 = 0.458;
797  G4double eta2 = 0.458;
798  G4double B = 0.308;
799 
800 
801  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
802 
803 
804  if(theParticle == theNeutron)
805  {
806  if( proj_momentum >= 373.)
807  {
808  return GetHadronNucleonXscPDG(aParticle,At,Zt);
809  }
810  else if( proj_momentum >= 10.)
811  // if( proj_momentum >= 2.)
812  {
813  // Delta = 1.; // DHW 19 May 2011: variable set but not used
814  // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
815 
816  if(proj_momentum >= 10.)
817  {
818  B0 = 7.5;
819  A0 = 100. - B0*std::log(3.0e7);
820 
821  xsection = A0 + B0*std::log(proj_energy) - 11
822  + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
823  0.93827*0.93827,-0.165); // mb
824  }
825  xsection *= zz + nn;
826  }
827  else
828  {
829  // nn to be pp
830 
831  if( proj_momentum < 0.73 )
832  {
833  hnXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
834  }
835  else if( proj_momentum < 1.05 )
836  {
837  hnXscv = 23 + 40*(std::log(proj_momentum/0.73))*
838  (std::log(proj_momentum/0.73));
839  }
840  else // if( proj_momentum < 10. )
841  {
842  hnXscv = 39.0+
843  75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
844  }
845  // pn to be np
846 
847  if( proj_momentum < 0.8 )
848  {
849  hpXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
850  }
851  else if( proj_momentum < 1.4 )
852  {
853  hpXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
854  }
855  else // if( proj_momentum < 10. )
856  {
857  hpXscv = 33.3+
858  20.8*(std::pow(proj_momentum,2.0)-1.35)/
859  (std::pow(proj_momentum,2.50)+0.95);
860  }
861  xsection = hpXscv*zz + hnXscv*nn;
862  }
863  }
864  else if(theParticle == theProton)
865  {
866  if( proj_momentum >= 373.)
867  {
868  return GetHadronNucleonXscPDG(aParticle,At,Zt);
869  }
870  else if( proj_momentum >= 10.)
871  // if( proj_momentum >= 2.)
872  {
873  // Delta = 1.; DHW 19 May 2011: variable set but not used
874  // if( proj_energy < 40. ) Delta = 0.916+0.0021*proj_energy;
875 
876  if(proj_momentum >= 10.)
877  {
878  B0 = 7.5;
879  A0 = 100. - B0*std::log(3.0e7);
880 
881  xsection = A0 + B0*std::log(proj_energy) - 11
882  + 103*std::pow(2*0.93827*proj_energy + proj_mass*proj_mass+
883  0.93827*0.93827,-0.165); // mb
884  }
885  xsection *= zz + nn;
886  }
887  else
888  {
889  // pp
890 
891  if( proj_momentum < 0.73 )
892  {
893  hpXscv = 23 + 50*( std::pow( std::log(0.73/proj_momentum), 3.5 ) );
894  }
895  else if( proj_momentum < 1.05 )
896  {
897  hpXscv = 23 + 40*(std::log(proj_momentum/0.73))*
898  (std::log(proj_momentum/0.73));
899  }
900  else // if( proj_momentum < 10. )
901  {
902  hpXscv = 39.0+
903  75*(proj_momentum - 1.2)/(std::pow(proj_momentum,3.0) + 0.15);
904  }
905  // pn to be np
906 
907  if( proj_momentum < 0.8 )
908  {
909  hnXscv = 33+30*std::pow(std::log(proj_momentum/1.3),4.0);
910  }
911  else if( proj_momentum < 1.4 )
912  {
913  hnXscv = 33+30*std::pow(std::log(proj_momentum/0.95),2.0);
914  }
915  else // if( proj_momentum < 10. )
916  {
917  hnXscv = 33.3+
918  20.8*(std::pow(proj_momentum,2.0)-1.35)/
919  (std::pow(proj_momentum,2.50)+0.95);
920  }
921  xsection = hpXscv*zz + hnXscv*nn;
922  // xsection = hpXscv*(Zt + Nt);
923  // xsection = hnXscv*(Zt + Nt);
924  }
925  // xsection *= 0.95;
926  }
927  else if( theParticle == theAProton )
928  {
929  // xsection = Zt*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
930  // + 42.53*std::pow(sMand,-eta1) + 33.34*std::pow(sMand,-eta2));
931 
932  // xsection += Nt*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
933  // + 40.15*std::pow(sMand,-eta1) + 30.*std::pow(sMand,-eta2));
934 
935  G4double logP = std::log(proj_momentum);
936 
937  if( proj_momentum <= 1.0 )
938  {
939  xsection = zz*(65.55 + 53.84/(proj_momentum+1.e-6) );
940  }
941  else
942  {
943  xsection = zz*( 41.1 + 77.2*std::pow( proj_momentum, -0.68)
944  + 0.293*logP*logP - 1.82*logP );
945  }
946  if ( nn > 0.)
947  {
948  xsection += nn*( 41.9 + 96.2*std::pow( proj_momentum, -0.99) - 0.154*logP);
949  }
950  else // H
951  {
952  fInelasticXsc = 38.0 + 38.0*std::pow( proj_momentum, -0.96)
953  - 0.169*logP*logP;
954  fInelasticXsc *= millibarn;
955  }
956  }
957  else if( theParticle == thePiPlus )
958  {
959  if(proj_momentum < 0.4)
960  {
961  G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
962  hpXscv = Ex3+20.0;
963  }
964  else if( proj_momentum < 1.15 )
965  {
966  G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
967  hpXscv = Ex4+14.0;
968  }
969  else if(proj_momentum < 3.5)
970  {
971  G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
972  G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
973  hpXscv = Ex1+Ex2+27.5;
974  }
975  else // if(proj_momentum > 3.5) // mb
976  {
977  hpXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
978  }
979  // pi+n = pi-p??
980 
981  if(proj_momentum < 0.37)
982  {
983  hnXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
984  }
985  else if(proj_momentum<0.65)
986  {
987  hnXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
988  }
989  else if(proj_momentum<1.3)
990  {
991  hnXscv = 36.1+
992  10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
993  24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
994  }
995  else if(proj_momentum<3.0)
996  {
997  hnXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
998  3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
999  1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
1000  }
1001  else // mb
1002  {
1003  hnXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43);
1004  }
1005  xsection = hpXscv*zz + hnXscv*nn;
1006  }
1007  else if(theParticle == thePiMinus)
1008  {
1009  // pi-n = pi+p??
1010 
1011  if(proj_momentum < 0.4)
1012  {
1013  G4double Ex3 = 180*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.085/0.085);
1014  hnXscv = Ex3+20.0;
1015  }
1016  else if(proj_momentum < 1.15)
1017  {
1018  G4double Ex4 = 88*(std::log(proj_momentum/0.75))*(std::log(proj_momentum/0.75));
1019  hnXscv = Ex4+14.0;
1020  }
1021  else if(proj_momentum < 3.5)
1022  {
1023  G4double Ex1 = 3.2*std::exp(-(proj_momentum-2.55)*(proj_momentum-2.55)/0.55/0.55);
1024  G4double Ex2 = 12*std::exp(-(proj_momentum-1.47)*(proj_momentum-1.47)/0.225/0.225);
1025  hnXscv = Ex1+Ex2+27.5;
1026  }
1027  else // if(proj_momentum > 3.5) // mb
1028  {
1029  hnXscv = 10.6+2.*std::log(proj_energy)+25*std::pow(proj_energy,-0.43);
1030  }
1031  // pi-p
1032 
1033  if(proj_momentum < 0.37)
1034  {
1035  hpXscv = 28.0 + 40*std::exp(-(proj_momentum-0.29)*(proj_momentum-0.29)/0.07/0.07);
1036  }
1037  else if(proj_momentum<0.65)
1038  {
1039  hpXscv = 26+110*(std::log(proj_momentum/0.48))*(std::log(proj_momentum/0.48));
1040  }
1041  else if(proj_momentum<1.3)
1042  {
1043  hpXscv = 36.1+
1044  10*std::exp(-(proj_momentum-0.72)*(proj_momentum-0.72)/0.06/0.06)+
1045  24*std::exp(-(proj_momentum-1.015)*(proj_momentum-1.015)/0.075/0.075);
1046  }
1047  else if(proj_momentum<3.0)
1048  {
1049  hpXscv = 36.1+0.079-4.313*std::log(proj_momentum)+
1050  3*std::exp(-(proj_momentum-2.1)*(proj_momentum-2.1)/0.4/0.4)+
1051  1.5*std::exp(-(proj_momentum-1.4)*(proj_momentum-1.4)/0.12/0.12);
1052  }
1053  else // mb
1054  {
1055  hpXscv = 10.6+2*std::log(proj_energy)+30*std::pow(proj_energy,-0.43);
1056  }
1057  xsection = hpXscv*zz + hnXscv*nn;
1058  }
1059  else if(theParticle == theKPlus)
1060  {
1061  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
1062  + 7.14*std::pow(sMand,-eta1) - 13.45*std::pow(sMand,-eta2));
1063 
1064  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
1065  + 5.17*std::pow(sMand,-eta1) - 7.23*std::pow(sMand,-eta2));
1066  }
1067  else if(theParticle == theKMinus)
1068  {
1069  xsection = zz*( 17.91 + B*std::pow(std::log(sMand/s0),2.)
1070  + 7.14*std::pow(sMand,-eta1) + 13.45*std::pow(sMand,-eta2));
1071 
1072  xsection += nn*( 17.87 + B*std::pow(std::log(sMand/s0),2.)
1073  + 5.17*std::pow(sMand,-eta1) + 7.23*std::pow(sMand,-eta2));
1074  }
1075  else if(theParticle == theSMinus)
1076  {
1077  xsection = aa*( 35.20 + B*std::pow(std::log(sMand/s0),2.)
1078  - 199.*std::pow(sMand,-eta1) + 264.*std::pow(sMand,-eta2));
1079  }
1080  else if(theParticle == theGamma) // modify later on
1081  {
1082  xsection = aa*( 0.0 + B*std::pow(std::log(sMand/s0),2.)
1083  + 0.032*std::pow(sMand,-eta1) - 0.0*std::pow(sMand,-eta2));
1084 
1085  }
1086  else // as proton ???
1087  {
1088  xsection = zz*( 35.45 + B*std::pow(std::log(sMand/s0),2.)
1089  + 42.53*std::pow(sMand,-eta1) - 33.34*std::pow(sMand,-eta2));
1090 
1091  xsection += nn*( 35.80 + B*std::pow(std::log(sMand/s0),2.)
1092  + 40.15*std::pow(sMand,-eta1) - 30.*std::pow(sMand,-eta2));
1093  }
1094  xsection *= millibarn; // parametrised in mb
1095  return xsection;
1096 }
1097 
1098 G4double
1100  G4int At, G4int Zt)
1101 {
1102  G4double Tkin, logTkin, xsc, xscP, xscN;
1103  const G4ParticleDefinition* theParticle = aParticle->GetDefinition();
1104 
1105  G4int Nt = At-Zt; // number of neutrons
1106  if (Nt < 0) Nt = 0;
1107 
1108  Tkin = aParticle->GetKineticEnergy(); // Tkin in MeV
1109 
1110  if( Tkin > 70*GeV ) return GetHadronNucleonXscPDG(aParticle,At,Zt);
1111 
1112  logTkin = std::log(Tkin); // Tkin in MeV!!!
1113 
1114  if( theParticle == theKPlus )
1115  {
1116  xscP = hnXsc->GetKpProtonTotXscVector(logTkin);
1117  xscN = hnXsc->GetKpNeutronTotXscVector(logTkin);
1118  }
1119  else if( theParticle == theKMinus )
1120  {
1121  xscP = hnXsc->GetKmProtonTotXscVector(logTkin);
1122  xscN = hnXsc->GetKmNeutronTotXscVector(logTkin);
1123  }
1124  else // K-zero as half of K+ and K-
1125  {
1126  xscP = (hnXsc->GetKpProtonTotXscVector(logTkin)+hnXsc->GetKmProtonTotXscVector(logTkin))*0.5;
1127  xscN = (hnXsc->GetKpNeutronTotXscVector(logTkin)+hnXsc->GetKmNeutronTotXscVector(logTkin))*0.5;
1128  }
1129  xsc = xscP*Zt + xscN*Nt;
1130  return xsc;
1131 }
1133 //
1134 // Returns hadron-nucleon inelastic cross-section based on proper parametrisation
1135 
1136 G4double
1138  const G4Element* anElement)
1139 {
1140  G4int At = G4lrint(anElement->GetN()); // number of nucleons
1141  G4int Zt = G4lrint(anElement->GetZ()); // number of protons
1142 
1143  return GetHNinelasticXsc(aParticle, At, Zt);
1144 }
1145 
1147 //
1148 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1149 
1150 G4double
1152  G4int At, G4int Zt)
1153 {
1154  G4ParticleDefinition* hadron = aParticle->GetDefinition();
1155  G4double sumInelastic;
1156  G4int Nt = At - Zt;
1157  if(Nt < 0) Nt = 0;
1158 
1159  if( hadron == theKPlus )
1160  {
1161  sumInelastic = GetHNinelasticXscVU(aParticle, At, Zt);
1162  }
1163  else
1164  {
1165  //sumInelastic = Zt*GetHadronNucleonXscMK(aParticle, theProton);
1166  // sumInelastic += Nt*GetHadronNucleonXscMK(aParticle, theNeutron);
1167  sumInelastic = G4double(Zt)*GetHadronNucleonXscNS(aParticle, 1, 1);
1168  sumInelastic += G4double(Nt)*GetHadronNucleonXscNS(aParticle, 1, 0);
1169  }
1170  return sumInelastic;
1171 }
1172 
1173 
1175 //
1176 // Returns hadron-nucleon inelastic cross-section based on FTF-parametrisation
1177 
1178 G4double
1180  G4int At, G4int Zt)
1181 {
1182  G4int PDGcode = aParticle->GetDefinition()->GetPDGEncoding();
1183  G4int absPDGcode = std::abs(PDGcode);
1184 
1185  G4double Elab = aParticle->GetTotalEnergy();
1186  // (s - 2*0.88*GeV*GeV)/(2*0.939*GeV)/GeV;
1187  G4double Plab = aParticle->GetMomentum().mag();
1188  // std::sqrt(Elab * Elab - 0.88);
1189 
1190  Elab /= GeV;
1191  Plab /= GeV;
1192 
1193  G4double LogPlab = std::log( Plab );
1194  G4double sqrLogPlab = LogPlab * LogPlab;
1195 
1196  //G4cout<<"Plab = "<<Plab<<G4endl;
1197 
1198  G4double NumberOfTargetProtons = G4double(Zt);
1199  G4double NumberOfTargetNucleons = G4double(At);
1200  G4double NumberOfTargetNeutrons = NumberOfTargetNucleons - NumberOfTargetProtons;
1201 
1202  if(NumberOfTargetNeutrons < 0.0) NumberOfTargetNeutrons = 0.0;
1203 
1204  G4double Xtotal, Xelastic, Xinelastic;
1205 
1206  if( absPDGcode > 1000 ) //------Projectile is baryon --------
1207  {
1208  G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
1209  0.522*sqrLogPlab - 4.51*LogPlab;
1210 
1211  G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
1212  0.513*sqrLogPlab - 4.27*LogPlab;
1213 
1214  G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
1215  0.169*sqrLogPlab - 1.85*LogPlab;
1216 
1217  G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
1218  0.169*sqrLogPlab - 1.85*LogPlab;
1219 
1220  Xtotal = (NumberOfTargetProtons * XtotPP +
1221  NumberOfTargetNeutrons * XtotPN);
1222 
1223  Xelastic = (NumberOfTargetProtons * XelPP +
1224  NumberOfTargetNeutrons * XelPN);
1225  }
1226  else if( PDGcode == 211 ) //------Projectile is PionPlus -------
1227  {
1228  G4double XtotPiP = 16.4 + 19.3 *std::pow(Plab,-0.42) +
1229  0.19 *sqrLogPlab - 0.0 *LogPlab;
1230 
1231  G4double XtotPiN = 33.0 + 14.0 *std::pow(Plab,-1.36) +
1232  0.456*sqrLogPlab - 4.03*LogPlab;
1233 
1234  G4double XelPiP = 0.0 + 11.4*std::pow(Plab,-0.40) +
1235  0.079*sqrLogPlab - 0.0 *LogPlab;
1236 
1237  G4double XelPiN = 1.76 + 11.2*std::pow(Plab,-0.64) +
1238  0.043*sqrLogPlab - 0.0 *LogPlab;
1239 
1240  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1241  NumberOfTargetNeutrons * XtotPiN );
1242 
1243  Xelastic = ( NumberOfTargetProtons * XelPiP +
1244  NumberOfTargetNeutrons * XelPiN );
1245  }
1246  else if( PDGcode == -211 ) //------Projectile is PionMinus -------
1247  {
1248  G4double XtotPiP = 33.0 + 14.0 *std::pow(Plab,-1.36) +
1249  0.456*sqrLogPlab - 4.03*LogPlab;
1250 
1251  G4double XtotPiN = 16.4 + 19.3 *std::pow(Plab,-0.42) +
1252  0.19 *sqrLogPlab - 0.0 *LogPlab;
1253 
1254  G4double XelPiP = 1.76 + 11.2*std::pow(Plab,-0.64) +
1255  0.043*sqrLogPlab - 0.0 *LogPlab;
1256 
1257  G4double XelPiN = 0.0 + 11.4*std::pow(Plab,-0.40) +
1258  0.079*sqrLogPlab - 0.0 *LogPlab;
1259 
1260  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1261  NumberOfTargetNeutrons * XtotPiN );
1262 
1263  Xelastic = ( NumberOfTargetProtons * XelPiP +
1264  NumberOfTargetNeutrons * XelPiN );
1265  }
1266  else if( PDGcode == 111 ) //------Projectile is PionZero -------
1267  {
1268  G4double XtotPiP =(16.4 + 19.3 *std::pow(Plab,-0.42) +
1269  0.19 *sqrLogPlab - 0.0 *LogPlab + //Pi+
1270  33.0 + 14.0 *std::pow(Plab,-1.36) +
1271  0.456*sqrLogPlab - 4.03*LogPlab)/2; //Pi-
1272 
1273  G4double XtotPiN =(33.0 + 14.0 *std::pow(Plab,-1.36) +
1274  0.456*sqrLogPlab - 4.03*LogPlab + //Pi+
1275  16.4 + 19.3 *std::pow(Plab,-0.42) +
1276  0.19 *sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1277 
1278  G4double XelPiP =( 0.0 + 11.4*std::pow(Plab,-0.40) +
1279  0.079*sqrLogPlab - 0.0 *LogPlab + //Pi+
1280  1.76 + 11.2*std::pow(Plab,-0.64) +
1281  0.043*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1282 
1283  G4double XelPiN =( 1.76 + 11.2*std::pow(Plab,-0.64) +
1284  0.043*sqrLogPlab - 0.0 *LogPlab + //Pi+
1285  0.0 + 11.4*std::pow(Plab,-0.40) +
1286  0.079*sqrLogPlab - 0.0 *LogPlab)/2; //Pi-
1287 
1288  Xtotal = ( NumberOfTargetProtons * XtotPiP +
1289  NumberOfTargetNeutrons * XtotPiN );
1290 
1291  Xelastic = ( NumberOfTargetProtons * XelPiP +
1292  NumberOfTargetNeutrons * XelPiN );
1293  }
1294  else if( PDGcode == 321 ) //------Projectile is KaonPlus -------
1295  {
1296  G4double XtotKP = 18.1 + 0. *std::pow(Plab, 0. ) +
1297  0.26 *sqrLogPlab - 1.0 *LogPlab;
1298  G4double XtotKN = 18.7 + 0. *std::pow(Plab, 0. ) +
1299  0.21 *sqrLogPlab - 0.89*LogPlab;
1300 
1301  G4double XelKP = 5.0 + 8.1*std::pow(Plab,-1.8 ) +
1302  0.16 *sqrLogPlab - 1.3 *LogPlab;
1303 
1304  G4double XelKN = 7.3 + 0. *std::pow(Plab,-0. ) +
1305  0.29 *sqrLogPlab - 2.4 *LogPlab;
1306 
1307  Xtotal = ( NumberOfTargetProtons * XtotKP +
1308  NumberOfTargetNeutrons * XtotKN );
1309 
1310  Xelastic = ( NumberOfTargetProtons * XelKP +
1311  NumberOfTargetNeutrons * XelKN );
1312  }
1313  else if( PDGcode ==-321 ) //------Projectile is KaonMinus ------
1314  {
1315  G4double XtotKP = 32.1 + 0. *std::pow(Plab, 0. ) +
1316  0.66 *sqrLogPlab - 5.6 *LogPlab;
1317  G4double XtotKN = 25.2 + 0. *std::pow(Plab, 0. ) +
1318  0.38 *sqrLogPlab - 2.9 *LogPlab;
1319 
1320  G4double XelKP = 7.3 + 0. *std::pow(Plab,-0. ) +
1321  0.29 *sqrLogPlab - 2.4 *LogPlab;
1322 
1323  G4double XelKN = 5.0 + 8.1*std::pow(Plab,-1.8 ) +
1324  0.16 *sqrLogPlab - 1.3 *LogPlab;
1325 
1326  Xtotal = ( NumberOfTargetProtons * XtotKP +
1327  NumberOfTargetNeutrons * XtotKN );
1328 
1329  Xelastic = ( NumberOfTargetProtons * XelKP +
1330  NumberOfTargetNeutrons * XelKN );
1331  }
1332  else if( PDGcode == 311 ) //------Projectile is KaonZero ------
1333  {
1334  G4double XtotKP = ( 18.1 + 0. *std::pow(Plab, 0. ) +
1335  0.26 *sqrLogPlab - 1.0 *LogPlab + //K+
1336  32.1 + 0. *std::pow(Plab, 0. ) +
1337  0.66 *sqrLogPlab - 5.6 *LogPlab)/2; //K-
1338 
1339  G4double XtotKN = ( 18.7 + 0. *std::pow(Plab, 0. ) +
1340  0.21 *sqrLogPlab - 0.89*LogPlab + //K+
1341  25.2 + 0. *std::pow(Plab, 0. ) +
1342  0.38 *sqrLogPlab - 2.9 *LogPlab)/2; //K-
1343 
1344  G4double XelKP = ( 5.0 + 8.1*std::pow(Plab,-1.8 )
1345  + 0.16 *sqrLogPlab - 1.3 *LogPlab + //K+
1346  7.3 + 0. *std::pow(Plab,-0. ) +
1347  0.29 *sqrLogPlab - 2.4 *LogPlab)/2; //K-
1348 
1349  G4double XelKN = ( 7.3 + 0. *std::pow(Plab,-0. ) +
1350  0.29 *sqrLogPlab - 2.4 *LogPlab + //K+
1351  5.0 + 8.1*std::pow(Plab,-1.8 ) +
1352  0.16 *sqrLogPlab - 1.3 *LogPlab)/2; //K-
1353 
1354  Xtotal = ( NumberOfTargetProtons * XtotKP +
1355  NumberOfTargetNeutrons * XtotKN );
1356 
1357  Xelastic = ( NumberOfTargetProtons * XelKP +
1358  NumberOfTargetNeutrons * XelKN );
1359  }
1360  else //------Projectile is undefined, Nucleon assumed
1361  {
1362  G4double XtotPP = 48.0 + 0. *std::pow(Plab, 0. ) +
1363  0.522*sqrLogPlab - 4.51*LogPlab;
1364 
1365  G4double XtotPN = 47.3 + 0. *std::pow(Plab, 0. ) +
1366  0.513*sqrLogPlab - 4.27*LogPlab;
1367 
1368  G4double XelPP = 11.9 + 26.9*std::pow(Plab,-1.21) +
1369  0.169*sqrLogPlab - 1.85*LogPlab;
1370  G4double XelPN = 11.9 + 26.9*std::pow(Plab,-1.21) +
1371  0.169*sqrLogPlab - 1.85*LogPlab;
1372 
1373  Xtotal = ( NumberOfTargetProtons * XtotPP +
1374  NumberOfTargetNeutrons * XtotPN );
1375 
1376  Xelastic = ( NumberOfTargetProtons * XelPP +
1377  NumberOfTargetNeutrons * XelPN );
1378  }
1379  Xinelastic = Xtotal - Xelastic;
1380 
1381  if( Xinelastic < 0.) Xinelastic = 0.;
1382 
1383  return Xinelastic*= millibarn;
1384 }
1385 
1387 //
1388 //
1389 
1390 G4double
1392  const G4Element* anElement)
1393 {
1394  G4int At = G4lrint(anElement->GetN());
1395  G4double oneThird = 1.0/3.0;
1396  G4double cubicrAt = std::pow(G4double(At), oneThird);
1397 
1398  G4double R; // = fRadiusConst*cubicrAt;
1399  /*
1400  G4double tmp = std::pow( cubicrAt-1., 3.);
1401  tmp += At;
1402  tmp *= 0.5;
1403 
1404  if (At > 20.) // 20.
1405  {
1406  R = fRadiusConst*std::pow (tmp, oneThird);
1407  }
1408  else
1409  {
1410  R = fRadiusConst*cubicrAt;
1411  }
1412  */
1413 
1414  R = fRadiusConst*cubicrAt;
1415 
1416  G4double meanA = 21.;
1417 
1418  G4double tauA1 = 40.;
1419  G4double tauA2 = 10.;
1420  G4double tauA3 = 5.;
1421 
1422  G4double a1 = 0.85;
1423  G4double b1 = 1. - a1;
1424 
1425  G4double b2 = 0.3;
1426  G4double b3 = 4.;
1427 
1428  if (At > 20) // 20.
1429  {
1430  R *= ( a1 + b1*std::exp( -(At - meanA)/tauA1) );
1431  }
1432  else if (At > 3)
1433  {
1434  R *= ( 1.0 + b2*( 1. - std::exp( (At - meanA)/tauA2) ) );
1435  }
1436  else
1437  {
1438  R *= ( 1.0 + b3*( 1. - std::exp( (At - meanA)/tauA3) ) );
1439  }
1440  return R;
1441 
1442 }
1444 //
1445 //
1446 
1447 G4double
1449 {
1450  G4double oneThird = 1.0/3.0;
1451  G4double cubicrAt = std::pow(G4double(At), oneThird);
1452 
1453  G4double R; // = fRadiusConst*cubicrAt;
1454 
1455  /*
1456  G4double tmp = std::pow( cubicrAt-1., 3.);
1457  tmp += At;
1458  tmp *= 0.5;
1459 
1460  if (At > 20.)
1461  {
1462  R = fRadiusConst*std::pow (tmp, oneThird);
1463  }
1464  else
1465  {
1466  R = fRadiusConst*cubicrAt;
1467  }
1468  */
1469 
1470  R = fRadiusConst*cubicrAt;
1471 
1472  G4double meanA = 20.;
1473  G4double tauA = 20.;
1474 
1475  if (At > 20) // 20.
1476  {
1477  R *= ( 0.8 + 0.2*std::exp( -(G4double(At) - meanA)/tauA) );
1478  }
1479  else
1480  {
1481  R *= ( 1.0 + 0.1*( 1. - std::exp( (G4double(At) - meanA)/tauA) ) );
1482  }
1483 
1484  return R;
1485 }
1486 
1488 //
1489 //
1490 
1492  const G4double mt ,
1493  const G4double Plab )
1494 {
1495  G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1496  G4double Ecm = std::sqrt ( mp * mp + mt * mt + 2 * Elab * mt );
1497  // G4double Pcm = Plab * mt / Ecm;
1498  // G4double KEcm = std::sqrt ( Pcm * Pcm + mp * mp ) - mp;
1499 
1500  return Ecm ; // KEcm;
1501 }
1502 
1504 //
1505 //
1506 
1508  const G4double mt ,
1509  const G4double Plab )
1510 {
1511  G4double Elab = std::sqrt ( mp * mp + Plab * Plab );
1512  G4double sMand = mp*mp + mt*mt + 2*Elab*mt ;
1513 
1514  return sMand;
1515 }
1516 
1518 //
1519 //
1520 
1522 {
1523  outFile << "G4GlauberGribovCrossSection calculates total, inelastic and\n"
1524  << "elastic cross sections for hadron-nucleus cross sections using\n"
1525  << "the Glauber model with Gribov corrections. It is valid for all\n"
1526  << "targets except hydrogen, and for incident p, pbar, n, sigma-,\n"
1527  << "pi+, pi-, K+, K- and gammas with energies above 3 GeV. This is\n"
1528  << "a cross section component which is to be used to build a cross\n"
1529  << "data set.\n";
1530 }
1531 
1532 //
1533 //