Geant4  9.6.p02
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4FermiPhaseSpaceDecay.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4ExcitationHandler.hh,v 1.13 2010-11-17 16:20:31 vnivanch Exp $
27 // GEANT4 tag $Name: not supported by cvs2svn $
28 //
29 // Hadronic Process: Phase space decay for the Fermi BreakUp model
30 // by V. Lara
31 //
32 // Modifications:
33 // 01.04.2011 General cleanup by V.Ivanchenko:
34 // - IsotropicVector is inlined
35 // - Momentum computation return zero or positive value
36 // - DumpProblem method is added providing more information
37 // - Reduced usage of exotic std functions
38 
39 #include <numeric>
40 
42 #include "G4SystemOfUnits.hh"
43 #include "G4HadronicException.hh"
44 
46 {
47  g4pow = G4Pow::GetInstance();
48 }
49 
51 {
52 }
53 
54 std::vector<G4LorentzVector*> *
55 G4FermiPhaseSpaceDecay::KopylovNBodyDecay(const G4double M,
56  const std::vector<G4double>& mr) const
57  // Calculates momentum for N fragments (Kopylov's method of sampling is used)
58 {
59  size_t N = mr.size();
60 
61  std::vector<G4LorentzVector*>* P = new std::vector<G4LorentzVector*>(N, 0);
62 
63  G4double mtot = std::accumulate( mr.begin(), mr.end(), 0.0);
64  G4double mu = mtot;
65  G4double PFragMagCM = 0.0;
66  G4double Mass = M;
67  G4double T = Mass-mtot;
68  G4LorentzVector PFragCM(0.0,0.0,0.0,0.0);
69  G4LorentzVector PRestCM(0.0,0.0,0.0,0.0);
70  G4LorentzVector PRestLab(0.0,0.0,0.0,Mass);
71 
72  for (size_t k = N-1; k>0; --k)
73  {
74  mu -= mr[k];
75  if (k>1) { T *= BetaKopylov(k); }
76  else { T = 0.0; }
77 
78  G4double RestMass = mu + T;
79 
80  PFragMagCM = PtwoBody(Mass,mr[k],RestMass);
81 
82  // Create a unit vector with a random direction isotropically distributed
83  G4ThreeVector RandVector(IsotropicVector(PFragMagCM));
84 
85  PFragCM.setVect(RandVector);
86  PFragCM.setE(std::sqrt(PFragMagCM*PFragMagCM + mr[k]*mr[k]));
87 
88  PRestCM.setVect(-RandVector);
89  PRestCM.setE(std::sqrt(PFragMagCM*PFragMagCM + RestMass*RestMass));
90 
91 
92  G4ThreeVector BoostV = PRestLab.boostVector();
93 
94  PFragCM.boost(BoostV);
95  PRestCM.boost(BoostV);
96  PRestLab = PRestCM;
97 
98  (*P)[k] = new G4LorentzVector(PFragCM);
99 
100  Mass = RestMass;
101  }
102 
103  (*P)[0] = new G4LorentzVector(PRestLab);
104 
105  return P;
106 }
107 
108 
109 std::vector<G4LorentzVector*> *
110 G4FermiPhaseSpaceDecay::NBodyDecay(G4double M, const std::vector<G4double>& mr) const
111 {
112  // Number of fragments
113  size_t N = mr.size();
114  size_t i, j;
115  // Total Daughters Mass
116  G4double mtot = std::accumulate( mr.begin(), mr.end(), 0.0);
117  G4double Emax = M - mtot + mr[0];
118  G4double Emin = 0.0;
119  G4double Wmax = 1.0;
120  for (i = 1; i < N; i++)
121  {
122  Emax += mr[i];
123  Emin += mr[i-1];
124  Wmax *= PtwoBody(Emax, Emin, mr[i]);
125  }
126 
127  G4int ntries = 0;
128  G4double weight = 1.0;
129  std::vector<G4double> p(N, 0.0);
130  std::vector<G4double> r(N,0.0);
131  std::vector<G4double> vm(N, 0.0);
132  r[N-1] = 1.0;
133 
134  do
135  {
136  // Sample uniform random numbers in increasing order
137  for (i = 1; i < N-1; i++) { r[i] = G4UniformRand(); }
138  std::sort(r.begin(),r.end(), std::less<G4double>());
139 
140  // Calculate virtual masses
141  std::partial_sum(mr.begin(), mr.end(), vm.begin());
142  std::transform(r.begin(), r.end(), r.begin(),
143  std::bind2nd(std::multiplies<G4double>(), M-mtot));
144  std::transform(r.begin(), r.end(), vm.begin(), vm.begin(), std::plus<G4double>());
145 
146  // Calcualte daughter momenta
147  weight = 1.0;
148  for (j = 0; j < N-1; j++)
149  {
150  p[j] = PtwoBody(vm[j+1],vm[j],mr[j+1]);
151  weight *= p[j];
152  }
153  p[N-1] = PtwoBody(vm[N-2],mr[N-2],mr[N-1]);
154 
155 
156  if (ntries++ > 1000000)
157  {
158  throw G4HadronicException(__FILE__, __LINE__, "Failed to decay");
159  }
160  }
161  while ( weight < G4UniformRand()*Wmax );
162 
163  std::vector<G4LorentzVector*> * P = new std::vector<G4LorentzVector*>(N, 0);
164 
165  G4ThreeVector a3P = IsotropicVector(p[0]);
166 
167  (*P)[0] = new G4LorentzVector( a3P, std::sqrt(a3P.mag2()+mr[0]*mr[0]) );
168  (*P)[1] = new G4LorentzVector(-a3P, std::sqrt(a3P.mag2()+mr[1]*mr[1]) );
169  for (i = 2; i < N; i++)
170  {
171  a3P = IsotropicVector(p[i-1]);
172  (*P)[i] = new G4LorentzVector(a3P, std::sqrt(a3P.mag2() + mr[i]*mr[i]));
173  G4ThreeVector Beta = -((*P)[i]->boostVector());
174  // boost already created particles
175  for (j = 0; j < i; j++)
176  {
177  (*P)[j]->boost(Beta);
178  }
179  }
180 
181  return P;
182 }
183 
184 std::vector<G4LorentzVector*> *
185 G4FermiPhaseSpaceDecay::TwoBodyDecay(G4double M,
186  const std::vector<G4double>& mass) const
187 {
188  G4double m0 = mass.front();
189  G4double m1 = mass.back();
190  G4double mom = PtwoBody(M,m0,m1);
191  G4ThreeVector p = IsotropicVector(mom);
192 
193  G4LorentzVector * P41 = new G4LorentzVector;
194  P41->setVect(p);
195  P41->setE(std::sqrt(mom*mom + m0*m0));
196 
197  G4LorentzVector * P42 = new G4LorentzVector;
198  P42->setVect(-p);
199  P42->setE(std::sqrt(mom*mom + m1*m1));
200 
201  std::vector<G4LorentzVector*> * result = new std::vector<G4LorentzVector*>;
202  result->push_back(P41);
203  result->push_back(P42);
204  return result;
205 }
206 
207 void
208 G4FermiPhaseSpaceDecay::DumpProblem(G4double E, G4double P1, G4double P2,
209  G4double P) const
210 {
211  G4cout << "G4FermiPhaseSpaceDecay: problem of decay of M(GeV)= " << E/GeV
212  << " on M1(GeV)= " << P1/GeV << " and M2(GeV)= " << P2/GeV
213  << " P(MeV)= " << P/MeV << " < 0" << G4endl;
214  // exception only if the problem is numerically significant
215  if(P < -CLHEP::eV) {
216  throw G4HadronicException(__FILE__, __LINE__,"Error in decay kinematics");
217  }
218 }
219 
220