Geant4  10.03
c2_function< float_type > Class Template Referenceabstract

the parent class for all c2_functions. More...

#include <c2_function.hh>

+ Inheritance diagram for c2_function< float_type >:
+ Collaboration diagram for c2_function< float_type >:

Classes

struct  c2_integrate_recur
 structure used to pass information recursively in integrator. More...
 
struct  c2_root_info
 structure used to hold root bracketing information More...
 
struct  c2_sample_recur
 structure used to pass information recursively in sampler. More...
 
struct  recur_item
 the data element for the internal recursion stack for the sampler and integrator More...
 

Public Member Functions

const std::string cvs_header_vers () const
 get versioning information for the header file More...
 
const std::string cvs_file_vers () const
 get versioning information for the source file More...
 
virtual ~c2_function ()
 destructor More...
 
virtual float_type value_with_derivatives (float_type x, float_type *yprime, float_type *yprime2) const =0 throw (c2_exception)
 get the value and derivatives. More...
 
float_type operator() (float_type x) const throw (c2_exception)
 evaluate the function in the classic way, ignoring derivatives. More...
 
float_type operator() (float_type x, float_type *yprime, float_type *yprime2) const throw (c2_exception)
 get the value and derivatives. More...
 
float_type find_root (float_type lower_bracket, float_type upper_bracket, float_type start, float_type value, int *error=0, float_type *final_yprime=0, float_type *final_yprime2=0) const throw (c2_exception)
 solve f(x)==value very efficiently, with explicit knowledge of derivatives of the function More...
 
float_type partial_integrals (std::vector< float_type > xgrid, std::vector< float_type > *partials=0, float_type abs_tol=1e-12, float_type rel_tol=1e-12, int derivs=2, bool adapt=true, bool extrapolate=true) const throw (c2_exception)
 solve f(x)=value partial_integrals uses a method with an error O(dx**10) with full information from the derivatives, and falls back to lower order methods if informed of incomplete derivatives. It uses exact midpoint splitting of the intervals for recursion, resulting in no recomputation of the function during recursive descent at previously computed points. More...
 
float_type integral (float_type amin, float_type amax, std::vector< float_type > *partials=0, float_type abs_tol=1e-12, float_type rel_tol=1e-12, int derivs=2, bool adapt=true, bool extrapolate=true) const throw (c2_exception)
 a fully-automated integrator which uses the information provided by the get_sampling_grid() function to figure out what to do. More...
 
c2_piecewise_function_p
< float_type > * 
adaptively_sample (float_type amin, float_type amax, float_type abs_tol=1e-12, float_type rel_tol=1e-12, int derivs=2, std::vector< float_type > *xvals=0, std::vector< float_type > *yvals=0) const throw (c2_exception)
 create a c2_piecewise_function_p from c2_connector_function_p segments which is a representation of the parent function to the specified accuracy, but maybe much cheaper to evaluate More...
 
float_type xmin () const
 
float_type xmax () const
 
void set_domain (float_type amin, float_type amax)
 
size_t get_evaluations () const
 and sampler do increment it. More...
 
void reset_evaluations () const
 reset the counter More...
 
void increment_evaluations () const
 count evaluations More...
 
bool check_monotonicity (const std::vector< float_type > &data, const char message[]) const throw (c2_exception)
 check that a vector is monotonic, throw an exception if not, and return a flag if it is reversed More...
 
virtual void set_sampling_grid (const std::vector< float_type > &grid) throw (c2_exception)
 establish a grid of 'interesting' points on the function. More...
 
std::vector< float_type > * get_sampling_grid_pointer () const
 get the sampling grid, which may be a null pointer More...
 
virtual void get_sampling_grid (float_type amin, float_type amax, std::vector< float_type > &grid) const
 
void preen_sampling_grid (std::vector< float_type > *result) const
 The grid is modified in place. More...
 
void refine_sampling_grid (std::vector< float_type > &grid, size_t refinement) const
 
c2_function< float_type > & normalized_function (float_type amin, float_type amax, float_type norm=1.0) const throw (c2_exception)
 create a new c2_function from this one which is normalized on the interval More...
 
c2_function< float_type > & square_normalized_function (float_type amin, float_type amax, float_type norm=1.0) const throw (c2_exception)
 
c2_function< float_type > & square_normalized_function (float_type amin, float_type amax, const c2_function< float_type > &weight, float_type norm=1.0) const throw (c2_exception)
 create a new c2_function from this one which is square-normalized with the provided weight on the interval More...
 
c2_sum_p< float_type > & operator+ (const c2_function< float_type > &rhs) const
 factory function to create a c2_sum_p from a regular algebraic expression. More...
 
c2_diff_p< float_type > & operator- (const c2_function< float_type > &rhs) const
 factory function to create a c2_diff_p from a regular algebraic expression. More...
 
c2_product_p< float_type > & operator* (const c2_function< float_type > &rhs) const
 factory function to create a c2_product_p from a regular algebraic expression. More...
 
c2_ratio_p< float_type > & operator/ (const c2_function< float_type > &rhs) const
 
c2_composed_function_p
< float_type > & 
operator() (const c2_function< float_type > &inner) const
 compose this function outside another. More...
 
float_type get_trouble_point () const
 Find out where a calculation ran into trouble, if it got a nan. If the most recent computation did not return a nan, this is undefined. More...
 
void claim_ownership () const
 increment our reference count. Destruction is only legal if the count is zero. More...
 
size_t release_ownership_for_return () const throw (c2_exception)
 decrement our reference count. Do not destroy at zero. More...
 
void release_ownership () const throw (c2_exception)
 
size_t count_owners () const
 get the reference count, mostly for debugging More...
 
void fill_fblock (c2_fblock< float_type > &fb) const throw (c2_exception)
 fill in a c2_fblock<float_type>... a shortcut for the integrator & sampler More...
 

Protected Member Functions

 c2_function (const c2_function< float_type > &src)
 
 c2_function ()
 
virtual void set_sampling_grid_pointer (std::vector< float_type > &grid)
 

Protected Attributes

std::vector< float_type > * sampling_grid
 
bool no_overwrite_grid
 
float_type fXMin
 
float_type fXMax
 
size_t evaluations
 
float_type bad_x_point
 this point may be used to record where a calculation ran into trouble More...
 

Private Member Functions

float_type integrate_step (struct c2_integrate_recur &rb) const throw (c2_exception)
 Carry out the recursive subdivision and integration. More...
 
void sample_step (struct c2_sample_recur &rb) const throw (c2_exception)
 Carry out the recursive subdivision for sampling. More...
 

Private Attributes

struct c2_root_inforoot_info
 this carry a memory of the last root bracketing, to avoid the necessity of evaluating the function on the brackets every time if the brackets have not been changed. it is declared as a pointer, since many c2_functions may never need one allocated More...
 
size_t owner_count
 

Detailed Description

template<typename float_type = double>
class c2_function< float_type >

the parent class for all c2_functions.

c2_functions know their value, first, and second derivative at almost every point. They can be efficiently combined with binary operators, via c2_binary_function, composed via c2_composed_function_, have their roots found via find_root(), and be adaptively integrated via partial_integrals() or integral(). They also can carry information with them about how to find 'interesting' points on the function. This information is set with set_sampling_grid() and extracted with get_sampling_grid().

Particularly important subclasses are the interpolating functions classes, interpolating_function , lin_log_interpolating_function, log_lin_interpolating_function, log_log_interpolating_function, and arrhenius_interpolating_function, as well as the template functions inverse_integrated_density_function().

For a discussion of memory management, see memory_management

Definition at line 147 of file c2_function.hh.

Constructor & Destructor Documentation

template<typename float_type = double>
virtual c2_function< float_type >::~c2_function ( )
inlinevirtual

destructor

Definition at line 161 of file c2_function.hh.

template<typename float_type = double>
c2_function< float_type >::c2_function ( const c2_function< float_type > &  src)
inlineprotected

Definition at line 527 of file c2_function.hh.

template<typename float_type = double>
c2_function< float_type >::c2_function ( )
inlineprotected

Definition at line 532 of file c2_function.hh.

Member Function Documentation

template<typename float_type = double>
c2_piecewise_function_p<float_type>* c2_function< float_type >::adaptively_sample ( float_type  amin,
float_type  amax,
float_type  abs_tol = 1e-12,
float_type  rel_tol = 1e-12,
int  derivs = 2,
std::vector< float_type > *  xvals = 0,
std::vector< float_type > *  yvals = 0 
) const
throw (c2_exception
)

create a c2_piecewise_function_p from c2_connector_function_p segments which is a representation of the parent function to the specified accuracy, but maybe much cheaper to evaluate

This method has three modes, depending on the derivs flag.

If derivs is 2, it computes a c2_piecewise_function_p representation of its parent function, which may be a much faster function to use in codes if the parent function is expensive. If xvals and yvals are non-null, it will also fill them in with the function values at each grid point the adaptive algorithm chooses.

If derivs is 1, this does not create the connectors, and returns an null pointer, but will fill in the xvals and yvals vectors with values of the function at points such that the linear interpolation error between the points is bounded by the tolerance values given. Because it uses derivative information from the function to manage the error control, it is almost completely free of issues with missing periods of oscillatory functions, even with no information provided in the sampling grid. This is typically useful for sampling a function for plotting.

If derivs is 0, this does something very like what it does if derivs = 1, but without derivatives. Instead, to compute the intermediate value of the function for error control, it just uses 3-point parabolic interpolation. This is useful amost exclusively for converting a non-c2_function, with no derivatives, but wrapped in a c2_classic_function wrapper, into a table of values to seed an interpolating_function_p. Note, however, that without derivatives, this is very susceptible to missing periods of oscillatory functions, so it is important to set a sampling grid which isn't too much coarser than the typical oscillations.

Note
the sampling_grid of the returned function matches the sampling_grid of its parent.
See also
Adaptive Sampling Examples
Parameters
aminlower bound of the domain for sampling
amaxupper bound of the domain for sampling
abs_tolthe absolute error bound for each segment
rel_tolthe fractional error bound for each segment.
derivsif 0 or 1, return a useless function, but fill in the xvals and yvals vectors (if non-null). Also, if 0 or 1, tolerances refer to linear interpolation, not high-order interpolation. If 2, return a full piecewise collection of c2_connector_function_p segments. See discussion above.
[in,out]xvalsvector of abscissas at which the function was actually sampled (if non-null)
[in,out]yvalsvector of function values corresponding to xvals (if non-null)
Returns
a new, sampled representation, if derivs is 2. A null pointer if derivs is 0 or 1.
template<typename float_type = double>
bool c2_function< float_type >::check_monotonicity ( const std::vector< float_type > &  data,
const char  message[] 
) const
throw (c2_exception
)

check that a vector is monotonic, throw an exception if not, and return a flag if it is reversed

Parameters
dataa vector of data points which are expected to be monotonic.
messagean informative string to include in an exception if this throws c2_exception
Returns
true if in decreasing order, false if increasing
template<typename float_type = double>
void c2_function< float_type >::claim_ownership ( ) const
inline

increment our reference count. Destruction is only legal if the count is zero.

Definition at line 506 of file c2_function.hh.

template<typename float_type = double>
size_t c2_function< float_type >::count_owners ( ) const
inline

get the reference count, mostly for debugging

Returns
the count

Definition at line 524 of file c2_function.hh.

template<typename float_type = double>
const std::string c2_function< float_type >::cvs_file_vers ( ) const

get versioning information for the source file

Returns
the CVS Id string
template<typename float_type = double>
const std::string c2_function< float_type >::cvs_header_vers ( ) const
inline

get versioning information for the header file

Returns
the CVS Id string

Definition at line 151 of file c2_function.hh.

template<typename float_type = double>
void c2_function< float_type >::fill_fblock ( c2_fblock< float_type > &  fb) const
throw (c2_exception
)
inline

fill in a c2_fblock<float_type>... a shortcut for the integrator & sampler

Parameters
[in,out]fbthe block to fill in with information

Definition at line 556 of file c2_function.hh.

template<typename float_type = double>
float_type c2_function< float_type >::find_root ( float_type  lower_bracket,
float_type  upper_bracket,
float_type  start,
float_type  value,
int *  error = 0,
float_type *  final_yprime = 0,
float_type *  final_yprime2 = 0 
) const
throw (c2_exception
)

solve f(x)==value very efficiently, with explicit knowledge of derivatives of the function

find_root solves by iterated inverse quadratic extrapolation for a solution to f(x)=y. It includes checks against bad convergence, so it should never be able to fail. Unlike typical secant method or fancier Brent's method finders, this does not depend in any strong wasy on the brackets, unless the finder has to resort to successive approximations to close in on a root. Often, it is possible to make the brackets equal to the domain of the function, if there is any clue as to where the root lies, as given by the parameter start.

Parameters
lower_bracketthe lower bound for the search
upper_bracketthe upper bound for the search. Function sign must be opposite to that at lower_bracket
startstarting value for the search
valuethe value of the function being sought (solves f(x) = value)
[out]errorIf pointer is zero, errors raise exception. Otherwise, returns error here.
[out]final_yprimeIf pointer is not zero, return derivative of function at root
[out]final_yprime2If pointer is not zero, return second derivative of function at root
Returns
the position of the root.
See also
Root finding sample

Referenced by G4ScreenedCoulombClassicalKinematics::DoScreeningComputation().

+ Here is the caller graph for this function:

template<typename float_type = double>
size_t c2_function< float_type >::get_evaluations ( ) const
inline

and sampler do increment it.

Returns
number of evaluations logged since last reset.

Definition at line 395 of file c2_function.hh.

template<typename float_type = double>
virtual void c2_function< float_type >::get_sampling_grid ( float_type  amin,
float_type  amax,
std::vector< float_type > &  grid 
) const
virtual

Reimplemented in c2_sin_p< float_type >, c2_plugin_function_p< float_type >, and c2_plugin_function_p< G4double >.

Referenced by c2_plugin_function_p< G4double >::get_sampling_grid().

+ Here is the caller graph for this function:

template<typename float_type = double>
std::vector<float_type>* c2_function< float_type >::get_sampling_grid_pointer ( ) const
inline

get the sampling grid, which may be a null pointer

Returns
pointer to the sampling grid

Definition at line 432 of file c2_function.hh.

template<typename float_type = double>
float_type c2_function< float_type >::get_trouble_point ( ) const
inline

Find out where a calculation ran into trouble, if it got a nan. If the most recent computation did not return a nan, this is undefined.

Returns
x value of point at which something went wrong, if integrator (or otherwise) returned a nan.

Definition at line 502 of file c2_function.hh.

template<typename float_type = double>
void c2_function< float_type >::increment_evaluations ( ) const
inline

count evaluations

Definition at line 399 of file c2_function.hh.

Referenced by c2_function< G4double >::fill_fblock().

+ Here is the caller graph for this function:

template<typename float_type = double>
float_type c2_function< float_type >::integral ( float_type  amin,
float_type  amax,
std::vector< float_type > *  partials = 0,
float_type  abs_tol = 1e-12,
float_type  rel_tol = 1e-12,
int  derivs = 2,
bool  adapt = true,
bool  extrapolate = true 
) const
throw (c2_exception
)

a fully-automated integrator which uses the information provided by the get_sampling_grid() function to figure out what to do.

It returns the integral of the function over the domain requested with error tolerances as specified. It is just a front-end to partial_integrals()

Parameters
aminlower bound of the domain for integration
amaxupper bound of the domain for integration
partialsif non-NULL, a vector in which to receive the partial integrals. It will automatically be sized appropriately, if provided, to contain n - 1 elements where n is the length of xgrid
abs_tolthe absolute error bound for each segment
rel_tolthe fractional error bound for each segment. If the error is smaller than either the relative or absolute tolerance, the integration step is finished.
derivsnumber of derivatives to trust, which sets the order of the integrator. The order is 3*derivs + 4. derivs can be 0, 1, or 2.
adaptif true, use recursive adaptation, otherwise do simple evaluation on the grid provided with no error checking.
extrapolateif true, use simple Richardson extrapolation on the final 2 steps to reduce the error.
Returns
sum of partial integrals, which is the definite integral from the first value in xgrid to the last.
template<typename float_type = double>
float_type c2_function< float_type >::integrate_step ( struct c2_integrate_recur rb) const
throw (c2_exception
)
private

Carry out the recursive subdivision and integration.

This passes information recursively through the recur block pointer to allow very efficient recursion.

Parameters
rba pointer to the recur struct.
template<typename float_type = double>
c2_function<float_type>& c2_function< float_type >::normalized_function ( float_type  amin,
float_type  amax,
float_type  norm = 1.0 
) const
throw (c2_exception
)

create a new c2_function from this one which is normalized on the interval

Parameters
aminlower bound of the domain for integration
amaxupper bound of the domain for integration
normthe desired integral for the function over the region
Returns
a new c2_function with the desired norm.
template<typename float_type = double>
float_type c2_function< float_type >::operator() ( float_type  x) const
throw (c2_exception
)
inline

evaluate the function in the classic way, ignoring derivatives.

Parameters
xthe point at which to evaluate
Returns
the value of the function

Definition at line 186 of file c2_function.hh.

template<typename float_type = double>
float_type c2_function< float_type >::operator() ( float_type  x,
float_type *  yprime,
float_type *  yprime2 
) const
throw (c2_exception
)
inline

get the value and derivatives.

Parameters
[in]xthe point at which to evaluate the function
[out]yprimethe first derivative (if pointer is non-null)
[out]yprime2the second derivative (if pointer is non-null)
Returns
the value of the function

Definition at line 195 of file c2_function.hh.

template<typename float_type = double>
c2_composed_function_p<float_type>& c2_function< float_type >::operator() ( const c2_function< float_type > &  inner) const
inline

compose this function outside another.

Parameters
innerthe inner function
Returns
the composed function

Definition at line 495 of file c2_function.hh.

template<typename float_type = double>
c2_product_p<float_type>& c2_function< float_type >::operator* ( const c2_function< float_type > &  rhs) const
inline

factory function to create a c2_product_p from a regular algebraic expression.

Parameters
rhsthe right-hand term of the product
Returns
a new c2_function

Definition at line 486 of file c2_function.hh.

template<typename float_type = double>
c2_sum_p<float_type>& c2_function< float_type >::operator+ ( const c2_function< float_type > &  rhs) const
inline

factory function to create a c2_sum_p from a regular algebraic expression.

Parameters
rhsthe right-hand term of the sum
Returns
a new c2_function

Definition at line 473 of file c2_function.hh.

template<typename float_type = double>
c2_diff_p<float_type>& c2_function< float_type >::operator- ( const c2_function< float_type > &  rhs) const
inline

factory function to create a c2_diff_p from a regular algebraic expression.

Parameters
rhsthe right-hand term of the difference
Returns
a new c2_function

Definition at line 479 of file c2_function.hh.

template<typename float_type = double>
c2_ratio_p<float_type>& c2_function< float_type >::operator/ ( const c2_function< float_type > &  rhs) const
inline

Definition at line 488 of file c2_function.hh.

template<typename float_type = double>
float_type c2_function< float_type >::partial_integrals ( std::vector< float_type >  xgrid,
std::vector< float_type > *  partials = 0,
float_type  abs_tol = 1e-12,
float_type  rel_tol = 1e-12,
int  derivs = 2,
bool  adapt = true,
bool  extrapolate = true 
) const
throw (c2_exception
)

solve f(x)=value partial_integrals uses a method with an error O(dx**10) with full information from the derivatives, and falls back to lower order methods if informed of incomplete derivatives. It uses exact midpoint splitting of the intervals for recursion, resulting in no recomputation of the function during recursive descent at previously computed points.

Parameters
xgridpoints between which to evaluate definite integrals.
partialsif non-NULL, a vector in which to receive the partial integrals. It will automatically be sized apprpropriately, if provided, to contain n - 1 elements where n is the length of xgrid
abs_tolthe absolute error bound for each segment
rel_tolthe fractional error bound for each segment. If the error is smaller than either the relative or absolute tolerance, the integration step is finished.
derivsnumber of derivatives to trust, which sets the order of the integrator. The order is 3*derivs + 4. derivs can be 0, 1, or 2.
adaptif true, use recursive adaptation, otherwise do simple evaluation on the grid provided with no error checking.
extrapolateif true, use simple Richardson extrapolation on the final 2 steps to reduce the error.
Returns
sum of partial integrals, which is the definite integral from the first value in xgrid to the last.
template<typename float_type = double>
void c2_function< float_type >::preen_sampling_grid ( std::vector< float_type > *  result) const

The grid is modified in place.

template<typename float_type = double>
void c2_function< float_type >::refine_sampling_grid ( std::vector< float_type > &  grid,
size_t  refinement 
) const
template<typename float_type = double>
void c2_function< float_type >::release_ownership ( ) const
throw (c2_exception
)
inline

Definition at line 519 of file c2_function.hh.

template<typename float_type = double>
size_t c2_function< float_type >::release_ownership_for_return ( ) const
throw (c2_exception
)
inline

decrement our reference count. Do not destroy at zero.

Returns
final owner count, to check whether object should disappear.

Definition at line 509 of file c2_function.hh.

Referenced by c2_function< G4double >::release_ownership().

+ Here is the caller graph for this function:

template<typename float_type = double>
void c2_function< float_type >::reset_evaluations ( ) const
inline

reset the counter

Definition at line 397 of file c2_function.hh.

template<typename float_type = double>
void c2_function< float_type >::sample_step ( struct c2_sample_recur rb) const
throw (c2_exception
)
private

Carry out the recursive subdivision for sampling.

This passes information recursively through the recur block pointer to allow very efficient recursion.

Parameters
rba pointer to the recur struct.
template<typename float_type = double>
void c2_function< float_type >::set_domain ( float_type  amin,
float_type  amax 
)
inline

Definition at line 391 of file c2_function.hh.

Referenced by c2_binary_function< float_type >::c2_binary_function(), c2_composed_function_p< float_type >::c2_composed_function_p(), LJZBLScreening(), and c2_plugin_function_p< G4double >::set_function().

+ Here is the caller graph for this function:

template<typename float_type = double>
virtual void c2_function< float_type >::set_sampling_grid ( const std::vector< float_type > &  grid)
throw (c2_exception
)
virtual

establish a grid of 'interesting' points on the function.

The sampling grid describes a reasonable initial set of points to look at the function. this should generally be set at a scale which is quite coarse, and sufficient for initializing adaptive integration or possibly root bracketing. For sampling a function to build a new interpolating function, one may want to refine this for accuracy. However, interpolating_functions themselves return their original X grid by default, so refining the grid in this case might be a bad idea.

Parameters
grida vector of abscissas. The contents is copied into an internal vector, so the grid can be discarded after passingin.
template<typename float_type = double>
virtual void c2_function< float_type >::set_sampling_grid_pointer ( std::vector< float_type > &  grid)
inlineprotectedvirtual

Definition at line 538 of file c2_function.hh.

Referenced by interpolating_function_p< float_type >::clone_data().

+ Here is the caller graph for this function:

template<typename float_type = double>
c2_function<float_type>& c2_function< float_type >::square_normalized_function ( float_type  amin,
float_type  amax,
float_type  norm = 1.0 
) const
throw (c2_exception
)
template<typename float_type = double>
c2_function<float_type>& c2_function< float_type >::square_normalized_function ( float_type  amin,
float_type  amax,
const c2_function< float_type > &  weight,
float_type  norm = 1.0 
) const
throw (c2_exception
)

create a new c2_function from this one which is square-normalized with the provided weight on the interval

Parameters
aminlower bound of the domain for integration
amaxupper bound of the domain for integration
weighta c2_function providing the weight
normthe desired integral for the function over the region
Returns
a new c2_function with the desired norm.
template<typename float_type = double>
virtual float_type c2_function< float_type >::value_with_derivatives ( float_type  x,
float_type *  yprime,
float_type *  yprime2 
) const
throw (c2_exception
)
pure virtual

get the value and derivatives.

There is required checking for null pointers on the derivatives, and most implementations should operate faster if derivatives are not

Parameters
[in]xthe point at which to evaluate the function
[out]yprimethe first derivative (if pointer is non-null)
[out]yprime2the second derivative (if pointer is non-null)
Returns
the value of the function

Implemented in c2_piecewise_function_p< float_type >, c2_connector_function_p< float_type >, c2_inverse_function_p< float_type >, c2_power_law_p< float_type >, c2_quadratic_p< float_type >, c2_linear_p< float_type >, c2_linear_p< G4double >, c2_identity_p< float_type >, c2_recip_p< float_type >, c2_sqrt_p< float_type >, c2_exp_p< float_type >, c2_log_p< float_type >, c2_tan_p< float_type >, c2_cos_p< float_type >, c2_sin_p< float_type >, interpolating_function_p< float_type >, c2_constant_p< float_type >, c2_cached_function_p< float_type >, c2_scaled_function_p< float_type >, c2_binary_function< float_type >, c2_plugin_function_p< float_type >, c2_plugin_function_p< G4double >, and c2_classic_function_p< float_type >.

Referenced by c2_function< G4double >::fill_fblock(), and c2_function< G4double >::operator()().

+ Here is the caller graph for this function:

template<typename float_type = double>
float_type c2_function< float_type >::xmax ( ) const
inline
template<typename float_type = double>
float_type c2_function< float_type >::xmin ( ) const
inline

Member Data Documentation

template<typename float_type = double>
float_type c2_function< float_type >::bad_x_point
mutableprotected

this point may be used to record where a calculation ran into trouble

Definition at line 551 of file c2_function.hh.

Referenced by c2_function< G4double >::get_trouble_point().

template<typename float_type = double>
size_t c2_function< float_type >::evaluations
mutableprotected
template<typename float_type = double>
float_type c2_function< float_type >::fXMax
protected
template<typename float_type = double>
float_type c2_function< float_type >::fXMin
protected
template<typename float_type = double>
bool c2_function< float_type >::no_overwrite_grid
protected
template<typename float_type = double>
size_t c2_function< float_type >::owner_count
mutableprivate
template<typename float_type = double>
struct c2_root_info* c2_function< float_type >::root_info
private

this carry a memory of the last root bracketing, to avoid the necessity of evaluating the function on the brackets every time if the brackets have not been changed. it is declared as a pointer, since many c2_functions may never need one allocated

Definition at line 628 of file c2_function.hh.

Referenced by c2_function< G4double >::~c2_function().

template<typename float_type = double>
std::vector<float_type>* c2_function< float_type >::sampling_grid
protected

The documentation for this class was generated from the following file: