Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4QMDNucleus Class Reference

#include <G4QMDNucleus.hh>

Inheritance diagram for G4QMDNucleus:
Collaboration diagram for G4QMDNucleus:

Public Member Functions

 G4QMDNucleus ()
 
G4LorentzVector Get4Momentum ()
 
G4int GetMassNumber ()
 
G4int GetAtomicNumber ()
 
void CalEnergyAndAngularMomentumInCM ()
 
G4double GetNuclearMass ()
 
void SetTotalPotential (G4double x)
 
G4double GetExcitationEnergy ()
 
G4int GetAngularMomentum ()
 
- Public Member Functions inherited from G4QMDSystem
 G4QMDSystem ()
 
virtual ~G4QMDSystem ()
 
void SetParticipant (G4QMDParticipant *particle)
 
void SetSystem (G4QMDSystem *, G4ThreeVector, G4ThreeVector)
 
void SubtractSystem (G4QMDSystem *)
 
G4QMDParticipantEraseParticipant (G4int i)
 
void DeleteParticipant (G4int i)
 
void InsertParticipant (G4QMDParticipant *particle, G4int j)
 
G4int GetTotalNumberOfParticipant ()
 
G4QMDParticipantGetParticipant (G4int i)
 
void IncrementCollisionCounter ()
 
G4int GetNOCollision ()
 
void ShowParticipants ()
 
void Clear ()
 

Additional Inherited Members

- Protected Attributes inherited from G4QMDSystem
std::vector< G4QMDParticipant * > participants
 

Detailed Description

Definition at line 43 of file G4QMDNucleus.hh.

Constructor & Destructor Documentation

G4QMDNucleus::G4QMDNucleus ( )

Definition at line 38 of file G4QMDNucleus.cc.

39 {
41  hbc = parameters->Get_hbc();
42 
43  jj = 0; // will be calcualted in CalEnergyAndAngularMomentumInCM;
44  potentialEnergy = 0.0; // will be set through set method
45  excitationEnergy = 0.0;
46 }
G4double Get_hbc()
static G4QMDParameters * GetInstance()

Here is the call graph for this function:

Member Function Documentation

void G4QMDNucleus::CalEnergyAndAngularMomentumInCM ( )

Definition at line 138 of file G4QMDNucleus.cc.

139 {
140 
141  //G4cout << "CalEnergyAndAngularMomentumInCM " << this->GetAtomicNumber() << " " << GetMassNumber() << G4endl;
142 
143  G4double gamma = Get4Momentum().gamma();
144  G4ThreeVector beta = Get4Momentum().v()/ Get4Momentum().e();
145 
146  G4ThreeVector pcm0( 0.0 ) ;
147 
149  pcm.resize( n );
150 
151  for ( G4int i= 0; i < n ; i++ )
152  {
154 
155  G4double trans = gamma / ( gamma + 1.0 ) * p_i * beta;
156  pcm[i] = p_i - trans*beta;
157 
158  pcm0 += pcm[i];
159  }
160 
161  pcm0 = pcm0 / double ( n );
162 
163  //G4cout << "pcm0 " << pcm0 << G4endl;
164 
165  for ( G4int i= 0; i < n ; i++ )
166  {
167  pcm[i] += -pcm0;
168  //G4cout << "pcm " << i << " " << pcm[i] << G4endl;
169  }
170 
171 
172  G4double tmass = 0;
173  G4ThreeVector rcm0( 0.0 ) ;
174  rcm.resize( n );
175  es.resize( n );
176 
177  for ( G4int i= 0; i < n ; i++ )
178  {
180  G4double trans = gamma / ( gamma + 1.0 ) * ri * beta;
181 
182  es[i] = std::sqrt ( G4Pow::GetInstance()->powN ( GetParticipant( i )->GetMass() , 2 ) + pcm[i]*pcm[i] );
183 
184  rcm[i] = ri + trans*beta;
185 
186  rcm0 += rcm[i]*es[i];
187 
188  tmass += es[i];
189  }
190 
191  rcm0 = rcm0/tmass;
192 
193  for ( G4int i= 0; i < n ; i++ )
194  {
195  rcm[i] += -rcm0;
196  //G4cout << "rcm " << i << " " << rcm[i] << G4endl;
197  }
198 
199 // Angluar momentum
200 
201  G4ThreeVector rl ( 0.0 );
202  for ( G4int i= 0; i < n ; i++ )
203  {
204  rl += rcm[i].cross ( pcm[i] );
205  }
206 
207  jj = int ( std::sqrt ( rl*rl / hbc ) + 0.5 );
208 
209 
210 // kinetic energy per nucleon in CM
211 
212  G4double totalMass = 0.0;
213  for ( G4int i= 0; i < n ; i++ )
214  {
215  // following two lines are equivalent
216  //totalMass += GetParticipant( i )->GetDefinition()->GetPDGMass()/GeV;
217  totalMass += GetParticipant( i )->GetMass();
218  }
219 
220  //G4double kineticEnergyPerNucleon = ( std::accumulate ( es.begin() , es.end() , 0.0 ) - totalMass )/n;
221 
222 // Total (not per nucleion ) Binding Energy
223  G4double bindingEnergy = ( std::accumulate ( es.begin() , es.end() , 0.0 ) -totalMass ) + potentialEnergy;
224 
225  //G4cout << "KineticEnergyPerNucleon in GeV " << kineticEnergyPerNucleon << G4endl;
226  //G4cout << "KineticEnergySum in GeV " << std::accumulate ( es.begin() , es.end() , 0.0 ) - totalMass << G4endl;
227  //G4cout << "PotentialEnergy in GeV " << potentialEnergy << G4endl;
228  //G4cout << "BindingEnergy in GeV " << bindingEnergy << G4endl;
229  //G4cout << "G4BindingEnergy in GeV " << G4NucleiProperties::GetBindingEnergy( GetAtomicNumber() , GetMassNumber() )/GeV << G4endl;
230 
231  excitationEnergy = bindingEnergy + G4NucleiProperties::GetBindingEnergy( GetMassNumber() , GetAtomicNumber() )/GeV;
232  //G4cout << "excitationEnergy in GeV " << excitationEnergy << G4endl;
233  if ( excitationEnergy < 0 ) excitationEnergy = 0.0;
234 
235 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4int GetAtomicNumber()
Definition: G4QMDNucleus.cc:89
G4ThreeVector GetPosition()
G4int GetMassNumber()
Definition: G4QMDNucleus.cc:68
Hep3Vector v() const
int G4int
Definition: G4Types.hh:78
G4ThreeVector GetMomentum()
G4LorentzVector Get4Momentum()
Definition: G4QMDNucleus.cc:56
typedef int(XMLCALL *XML_NotStandaloneHandler)(void *userData)
G4int GetTotalNumberOfParticipant()
Definition: G4QMDSystem.hh:60
const G4int n
G4QMDParticipant * GetParticipant(G4int i)
Definition: G4QMDSystem.hh:62
static G4double GetBindingEnergy(const G4int A, const G4int Z)
static constexpr double GeV
Definition: G4SIunits.hh:217
double G4double
Definition: G4Types.hh:76
G4double bindingEnergy(G4int A, G4int Z)

Here is the call graph for this function:

Here is the caller graph for this function:

G4LorentzVector G4QMDNucleus::Get4Momentum ( )

Definition at line 56 of file G4QMDNucleus.cc.

57 {
58  G4LorentzVector p( 0 );
59  std::vector< G4QMDParticipant* >::iterator it;
60  for ( it = participants.begin() ; it != participants.end() ; it++ )
61  p += (*it)->Get4Momentum();
62 
63  return p;
64 }
const char * p
Definition: xmltok.h:285
std::vector< G4QMDParticipant * > participants
Definition: G4QMDSystem.hh:72

Here is the caller graph for this function:

G4int G4QMDNucleus::GetAngularMomentum ( )
inline

Definition at line 65 of file G4QMDNucleus.hh.

65 { return jj; };
G4int G4QMDNucleus::GetAtomicNumber ( )

Definition at line 89 of file G4QMDNucleus.cc.

90 {
91  G4int Z = 0;
92  std::vector< G4QMDParticipant* >::iterator it;
93  for ( it = participants.begin() ; it != participants.end() ; it++ )
94  {
95  if ( (*it)->GetDefinition() == G4Proton::Proton() )
96  Z++;
97  }
98  return Z;
99 }
int G4int
Definition: G4Types.hh:78
static G4Proton * Proton()
Definition: G4Proton.cc:93
std::vector< G4QMDParticipant * > participants
Definition: G4QMDSystem.hh:72

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4QMDNucleus::GetExcitationEnergy ( void  )
inline

Definition at line 63 of file G4QMDNucleus.hh.

63 { return excitationEnergy; };
G4int G4QMDNucleus::GetMassNumber ( )

Definition at line 68 of file G4QMDNucleus.cc.

69 {
70 
71  G4int A = 0;
72  std::vector< G4QMDParticipant* >::iterator it;
73  for ( it = participants.begin() ; it != participants.end() ; it++ )
74  {
75  if ( (*it)->GetDefinition() == G4Proton::Proton()
76  || (*it)->GetDefinition() == G4Neutron::Neutron() )
77  A++;
78  }
79 
80  if ( A == 0 ) {
81  throw G4HadronicException(__FILE__, __LINE__, "G4QMDNucleus has the mass number of 0!");
82  }
83 
84  return A;
85 }
int G4int
Definition: G4Types.hh:78
double A(double temperature)
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
std::vector< G4QMDParticipant * > participants
Definition: G4QMDSystem.hh:72

Here is the call graph for this function:

Here is the caller graph for this function:

G4double G4QMDNucleus::GetNuclearMass ( void  )

Definition at line 103 of file G4QMDNucleus.cc.

104 {
105 
107 
108  if ( mass == 0.0 )
109  {
110 
111  G4int Z = GetAtomicNumber();
112  G4int A = GetMassNumber();
113  G4int N = A - Z;
114 
115 // Weizsacker-Bethe
116 
117  G4double Av = 16*MeV;
118  G4double As = 17*MeV;
119  G4double Ac = 0.7*MeV;
120  G4double Asym = 23*MeV;
121 
122  G4double BE = Av * A
123  - As * G4Pow::GetInstance()->A23 ( G4double ( A ) )
124  - Ac * Z*Z/G4Pow::GetInstance()->A13 ( G4double ( A ) )
125  - Asym * ( N - Z )* ( N - Z ) / A;
126 
127  mass = Z * G4Proton::Proton()->GetPDGMass()
128  + N * G4Neutron::Neutron()->GetPDGMass()
129  - BE;
130 
131  }
132 
133  return mass;
134 }
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4int GetAtomicNumber()
Definition: G4QMDNucleus.cc:89
static G4double GetNuclearMass(const G4double A, const G4double Z)
G4int GetMassNumber()
Definition: G4QMDNucleus.cc:68
int G4int
Definition: G4Types.hh:78
G4double A23(G4double A) const
Definition: G4Pow.hh:160
double A(double temperature)
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4double GetPDGMass() const
G4double A13(G4double A) const
Definition: G4Pow.hh:132
**D E S C R I P T I O N
Definition: HEPEvtcom.cc:77
static constexpr double MeV
Definition: G4SIunits.hh:214
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

void G4QMDNucleus::SetTotalPotential ( G4double  x)
inline

Definition at line 62 of file G4QMDNucleus.hh.

62 { potentialEnergy = x; };
tuple x
Definition: test.py:50

Here is the caller graph for this function:


The documentation for this class was generated from the following files: