Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4MuMinusCapturePrecompound Class Reference

#include <G4MuMinusCapturePrecompound.hh>

Inheritance diagram for G4MuMinusCapturePrecompound:
Collaboration diagram for G4MuMinusCapturePrecompound:

Public Member Functions

 G4MuMinusCapturePrecompound (G4VPreCompoundModel *ptr=0)
 
 ~G4MuMinusCapturePrecompound ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair
< G4double, G4double
GetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double,
G4double
GetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void InitialiseModel ()
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 65 of file G4MuMinusCapturePrecompound.hh.

Constructor & Destructor Documentation

G4MuMinusCapturePrecompound::G4MuMinusCapturePrecompound ( G4VPreCompoundModel ptr = 0)

Definition at line 64 of file G4MuMinusCapturePrecompound.cc.

66  : G4HadronicInteraction("muMinusNuclearCapture")
67 {
68  fMuMass = G4MuonMinus::MuonMinus()->GetPDGMass();
69  fProton = G4Proton::Proton();
70  fNeutron = G4Neutron::Neutron();
71  fThreshold = 10*MeV;
72  fTime = 0.0;
73  fPreCompound = ptr;
74  if(!ptr) {
77  ptr = static_cast<G4VPreCompoundModel*>(p);
78  fPreCompound = ptr;
79  if(!ptr) { fPreCompound = new G4PreCompoundModel(); }
80  }
81 }
const char * p
Definition: xmltok.h:285
static G4Proton * Proton()
Definition: G4Proton.cc:93
G4HadronicInteraction(const G4String &modelName="HadronicModel")
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
G4HadronicInteraction * FindModel(const G4String &name)
G4double GetPDGMass() const
static G4HadronicInteractionRegistry * Instance()
static G4MuonMinus * MuonMinus()
Definition: G4MuonMinus.cc:100
static constexpr double MeV
Definition: G4SIunits.hh:214

Here is the call graph for this function:

G4MuMinusCapturePrecompound::~G4MuMinusCapturePrecompound ( )

Definition at line 85 of file G4MuMinusCapturePrecompound.cc.

86 {
87  result.Clear();
88 }

Here is the call graph for this function:

Member Function Documentation

G4HadFinalState * G4MuMinusCapturePrecompound::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus targetNucleus 
)
virtual

Implements G4HadronicInteraction.

Definition at line 93 of file G4MuMinusCapturePrecompound.cc.

95 {
96  result.Clear();
98  fTime = projectile.GetGlobalTime();
99  G4double time0 = fTime;
100 
101  G4double muBindingEnergy = projectile.GetBoundEnergy();
102 
103  G4int Z = targetNucleus.GetZ_asInt();
104  G4int A = targetNucleus.GetA_asInt();
106 
107  /*
108  G4cout << "G4MuMinusCapturePrecompound::ApplyYourself: Emu= "
109  << muBindingEnergy << G4endl;
110  */
111  // Energy on K-shell
112  G4double muEnergy = fMuMass + muBindingEnergy;
113  G4double muMom =std::sqrt(muBindingEnergy*(muBindingEnergy + 2.0*fMuMass));
114  G4double availableEnergy = massA + fMuMass - muBindingEnergy;
115  G4double residualMass = G4NucleiProperties::GetNuclearMass(A, Z - 1);
116 
117  G4ThreeVector vmu = muMom*G4RandomDirection();
118  G4LorentzVector aMuMom(vmu, muEnergy);
119 
120  const G4double nenergy = keV;
121 
122  // p or 3He as a target
123  // two body reaction mu- + A(Z,A) -> nuMu + A(Z-1,A)
124  if((1 == Z && 1 == A) || (2 == Z && 3 == A)) {
125 
126  const G4ParticleDefinition* pd = 0;
127  if(1 == Z) { pd = fNeutron; }
128  else { pd = G4Triton::Triton(); }
129 
130  //
131  // Computation in assumption of CM reaction
132  //
133  G4double e = 0.5*(availableEnergy -
134  residualMass*residualMass/availableEnergy);
135 
137  AddNewParticle(G4NeutrinoMu::NeutrinoMu(), nudir, e);
138  nudir *= -1.0;
139  AddNewParticle(pd, nudir, availableEnergy - e - residualMass);
140 
141  // d or 4He as a target
142  // three body reaction mu- + A(Z,A) -> nuMu + n + A(Z-1,A)
143  // extra neutron produced at rest
144  } else if((1 == Z && 2 == A) || (2 == Z && 4 == A)) {
145 
146  const G4ParticleDefinition* pd = 0;
147  if(1 == Z) { pd = fNeutron; }
148  else { pd = G4Triton::Triton(); }
149 
150  availableEnergy -= neutron_mass_c2 - nenergy;
151  residualMass = pd->GetPDGMass();
152 
153  //
154  // Computation in assumption of CM reaction
155  //
156  G4double e = 0.5*(availableEnergy -
157  residualMass*residualMass/availableEnergy);
158 
160  AddNewParticle(G4NeutrinoMu::NeutrinoMu(), nudir, e);
161  nudir *= -1.0;
162  AddNewParticle(pd, nudir, availableEnergy - e - residualMass);
163 
164  // extra low-energy neutron
165  nudir = G4RandomDirection();
166  AddNewParticle(fNeutron, nudir, nenergy);
167 
168  } else {
169  // sample mu- + p -> nuMu + n reaction in CM of muonic atom
170 
171  // nucleus
172  G4LorentzVector momInitial(0.0,0.0,0.0,availableEnergy);
173  G4LorentzVector momResidual, momNu;
174 
175  // pick random proton inside nucleus
176  G4double eEx;
177  fNucleus.Init(A, Z);
178  const std::vector<G4Nucleon>& nucleons= fNucleus.GetNucleons();
179  const G4ParticleDefinition* pDef;
180 
181  G4int reentryCount = 0;
182 
183  do {
184  ++reentryCount;
185  G4int index = 0;
186  do {
187  index=G4int(A*G4UniformRand());
188  pDef = nucleons[index].GetDefinition();
189  } while(pDef != fProton);
190  G4LorentzVector momP = nucleons[index].Get4Momentum();
191 
192  // Get CMS kinematics
193  G4LorentzVector theCMS = momP + aMuMom;
194  G4ThreeVector bst = theCMS.boostVector();
195 
196  G4double Ecms = theCMS.mag();
197  G4double Enu = 0.5*(Ecms - neutron_mass_c2*neutron_mass_c2/Ecms);
198  eEx = 0.0;
199 
200  if(Enu > 0.0) {
201  // make the nu, and transform to lab;
202  momNu.set(Enu*G4RandomDirection(), Enu);
203 
204  // nu in lab.
205  momNu.boost(bst);
206  momResidual = momInitial - momNu;
207  eEx = momResidual.mag() - residualMass;
208  if(eEx < 0.0 && eEx + nenergy >= 0.0) {
209  momResidual.set(0.0, 0.0, 0.0, residualMass);
210  eEx = 0.0;
211  }
212  }
213  // in the case of many iterations stop the loop
214  // with zero excitation energy
215  if(reentryCount > 100 && eEx < 0.0) {
217  ed << "Call for " << GetModelName() << G4endl;
218  ed << "Target Z= " << Z
219  << " A= " << A << " Eex(MeV)= " << eEx/MeV << G4endl;
220  ed << " ApplyYourself does not completed after 100 attempts -"
221  << " excitation energy is set to zero";
222  G4Exception("G4MuMinusCapturePrecompound::ApplyYourself", "had006",
223  JustWarning, ed);
224  momResidual.set(0.0, 0.0, 0.0, residualMass);
225  eEx = 0.0;
226  }
227  // Loop checking, 06-Aug-2015, Vladimir Ivanchenko
228  } while(eEx <= 0.0);
229 
230  G4ThreeVector dir = momNu.vect().unit();
231  AddNewParticle(G4NeutrinoMu::NeutrinoMu(), dir, momNu.e());
232 
233  G4Fragment initialState(A, Z-1, momResidual);
234  initialState.SetNumberOfExcitedParticle(2,0);
235  initialState.SetNumberOfHoles(1,1);
236 
237  // decay time for pre-compound/de-excitation starts from zero
238  G4ReactionProductVector* rpv = fPreCompound->DeExcite(initialState);
239  size_t n = rpv->size();
240  for(size_t i=0; i<n; ++i) {
241  G4ReactionProduct* rp = (*rpv)[i];
242 
243  // reaction time
244  fTime = time0 + rp->GetTOF();
245  G4ThreeVector direction = rp->GetMomentum().unit();
246  AddNewParticle(rp->GetDefinition(), direction, rp->GetKineticEnergy());
247  delete rp;
248  }
249  delete rpv;
250  }
251  if(verboseLevel > 1)
252  G4cout << "G4MuMinusCapturePrecompound::ApplyYourself: Nsec= "
253  << result.GetNumberOfSecondaries()
254  <<" E0(MeV)= " <<availableEnergy/MeV
255  <<" Mres(GeV)= " <<residualMass/GeV
256  <<G4endl;
257 
258  return &result;
259 }
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
Hep3Vector boostVector() const
static G4double GetNuclearMass(const G4double A, const G4double Z)
std::ostringstream G4ExceptionDescription
Definition: globals.hh:76
virtual G4ReactionProductVector * DeExcite(G4Fragment &aFragment)=0
G4ThreeVector G4RandomDirection()
const G4String & GetModelName() const
int G4int
Definition: G4Types.hh:78
void SetStatusChange(G4HadFinalStateStatus aS)
std::vector< G4ReactionProduct * > G4ReactionProductVector
const G4ParticleDefinition * GetDefinition() const
#define G4UniformRand()
Definition: Randomize.hh:97
G4GLOB_DLL std::ostream G4cout
double A(double temperature)
double mag() const
static G4NeutrinoMu * NeutrinoMu()
Definition: G4NeutrinoMu.cc:85
HepLorentzVector & boost(double, double, double)
void Init(G4int theA, G4int theZ)
static G4Triton * Triton()
Definition: G4Triton.cc:95
const G4int n
const std::vector< G4Nucleon > & GetNucleons()
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
float neutron_mass_c2
Definition: hepunit.py:276
G4double GetKineticEnergy() const
void set(double x, double y, double z, double t)
G4double GetPDGMass() const
Hep3Vector unit() const
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
G4double GetTOF() const
static constexpr double GeV
Definition: G4SIunits.hh:217
G4ThreeVector GetMomentum() const
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
double G4double
Definition: G4Types.hh:76
static constexpr double keV
Definition: G4SIunits.hh:216
G4int GetNumberOfSecondaries() const

Here is the call graph for this function:

void G4MuMinusCapturePrecompound::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 263 of file G4MuMinusCapturePrecompound.cc.

264 {
265  outFile << "Sampling of mu- capture by atomic nucleus from K-shell"
266  << " mesoatom orbit.\n"
267  << "Primary reaction mu- + p -> n + neutrino, neutron providing\n"
268  << " initial excitation of the target nucleus and PreCompound"
269  << " model samples final state\n";
270 }

The documentation for this class was generated from the following files: