Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4HadronElasticPhysics Class Reference

#include <G4HadronElasticPhysics.hh>

Inheritance diagram for G4HadronElasticPhysics:
Collaboration diagram for G4HadronElasticPhysics:

Public Member Functions

 G4HadronElasticPhysics (G4int ver=0)
 
virtual ~G4HadronElasticPhysics ()
 
virtual void ConstructParticle ()
 
virtual void ConstructProcess ()
 
G4HadronElasticGetNeutronModel ()
 
G4HadronicProcessGetNeutronProcess ()
 
- Public Member Functions inherited from G4VPhysicsConstructor
 G4VPhysicsConstructor (const G4String &="")
 
 G4VPhysicsConstructor (const G4String &name, G4int physics_type)
 
virtual ~G4VPhysicsConstructor ()
 
void SetPhysicsName (const G4String &="")
 
const G4StringGetPhysicsName () const
 
void SetPhysicsType (G4int)
 
G4int GetPhysicsType () const
 
void SetVerboseLevel (G4int value)
 
G4int GetVerboseLevel () const
 
G4int GetInstanceID () const
 

Additional Inherited Members

- Static Public Member Functions inherited from G4VPhysicsConstructor
static const G4VPCManagerGetSubInstanceManager ()
 
- Protected Member Functions inherited from G4VPhysicsConstructor
G4bool RegisterProcess (G4VProcess *process, G4ParticleDefinition *particle)
 
G4ParticleTable::G4PTblDicIteratorGetParticleIterator () const
 
- Protected Attributes inherited from G4VPhysicsConstructor
G4int verboseLevel
 
G4String namePhysics
 
G4int typePhysics
 
G4ParticleTabletheParticleTable
 
G4int g4vpcInstanceID
 
- Static Protected Attributes inherited from G4VPhysicsConstructor
static G4RUN_DLL G4VPCManager subInstanceManager
 

Detailed Description

Definition at line 52 of file G4HadronElasticPhysics.hh.

Constructor & Destructor Documentation

G4HadronElasticPhysics::G4HadronElasticPhysics ( G4int  ver = 0)

Definition at line 89 of file G4HadronElasticPhysics.cc.

90  : G4VPhysicsConstructor("hElasticWEL_CHIPS"), verbose(ver)
91 {
92  if(verbose > 1) {
93  G4cout << "### G4HadronElasticPhysics: " << GetPhysicsName()
94  << G4endl;
95  }
96 }
G4GLOB_DLL std::ostream G4cout
const G4String & GetPhysicsName() const
G4VPhysicsConstructor(const G4String &="")
#define G4endl
Definition: G4ios.hh:61

Here is the call graph for this function:

G4HadronElasticPhysics::~G4HadronElasticPhysics ( )
virtual

Definition at line 98 of file G4HadronElasticPhysics.cc.

99 {}

Member Function Documentation

void G4HadronElasticPhysics::ConstructParticle ( void  )
virtual

Implements G4VPhysicsConstructor.

Definition at line 101 of file G4HadronElasticPhysics.cc.

102 {
103  // G4cout << "G4HadronElasticPhysics::ConstructParticle" << G4endl;
104  G4MesonConstructor pMesonConstructor;
105  pMesonConstructor.ConstructParticle();
106 
107  G4BaryonConstructor pBaryonConstructor;
108  pBaryonConstructor.ConstructParticle();
109 
110  G4IonConstructor pConstructor;
111  pConstructor.ConstructParticle();
112 }
static void ConstructParticle()
static void ConstructParticle()
static void ConstructParticle()

Here is the call graph for this function:

Here is the caller graph for this function:

void G4HadronElasticPhysics::ConstructProcess ( void  )
virtual

Implements G4VPhysicsConstructor.

Reimplemented in HadronElasticPhysicsHP, HadronElasticPhysicsHP, and HadronElasticPhysicsHP.

Definition at line 114 of file G4HadronElasticPhysics.cc.

115 {
116  if(wasActivated) { return; }
117  wasActivated = true;
118 
119  const G4double elimitPi = 1.0*GeV;
120  const G4double elimitAntiNuc = 100.*MeV;
121  const G4double delta = 0.1*MeV;
122  if(verbose > 1) {
123  G4cout << "### HadronElasticPhysics::ConstructProcess: Elimit for pi "
124  << elimitPi/GeV << " GeV" << G4endl;
125  G4cout << " for anti-neuclei "
126  << elimitAntiNuc/GeV << " GeV" << G4endl;
127  }
128 
129  G4AntiNuclElastic* anuc = new G4AntiNuclElastic();
130  anuc->SetMinEnergy(elimitAntiNuc);
131  G4CrossSectionElastic* anucxs =
133 
134  G4HadronElastic* lhep0 = new G4HadronElastic();
135  G4HadronElastic* lhep1 = new G4HadronElastic();
136  G4HadronElastic* lhep2 = new G4HadronElastic();
137  lhep1->SetMaxEnergy(elimitPi+delta);
138  lhep2->SetMaxEnergy(elimitAntiNuc+delta);
139 
141  neutronModel = new G4ChipsElasticModel();
142 
144  he->SetMinEnergy(elimitPi);
145 
146  G4VCrossSectionDataSet* theComponentGGHadronNucleusData =
148 
149  auto myParticleIterator=GetParticleIterator();
150  myParticleIterator->reset();
151  while( (*myParticleIterator)() )
152  {
153  G4ParticleDefinition* particle = myParticleIterator->value();
154  G4ProcessManager* pmanager = particle->GetProcessManager();
155  G4String pname = particle->GetParticleName();
156  if(pname == "anti_lambda" ||
157  pname == "anti_neutron" ||
158  pname == "anti_omega-" ||
159  pname == "anti_sigma-" ||
160  pname == "anti_sigma+" ||
161  pname == "anti_xi-" ||
162  pname == "anti_xi0" ||
163  pname == "lambda" ||
164  pname == "omega-" ||
165  pname == "sigma-" ||
166  pname == "sigma+" ||
167  pname == "xi-" ||
168  pname == "alpha" ||
169  pname == "deuteron" ||
170  pname == "triton"
171  ) {
172 
174  hel->RegisterMe(lhep0);
175  pmanager->AddDiscreteProcess(hel);
176  if(verbose > 1) {
177  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
178  << " added for " << particle->GetParticleName() << G4endl;
179  }
180 
181  } else if(pname == "He3") {
183  G4VCrossSectionDataSet* theComponentGGNuclNuclData =
185  hel->AddDataSet(theComponentGGNuclNuclData);
186  hel->RegisterMe(lhep0);
187  pmanager->AddDiscreteProcess(hel);
188  if(verbose > 1) {
189  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
190  << " added for " << particle->GetParticleName() << G4endl;
191  }
192 
193  } else if(pname == "proton") {
194 
196  //hel->AddDataSet(new G4BGGNucleonElasticXS(particle));
197 
198  // hel->AddDataSet(new G4ChipsProtonElasticXS());
200 
201  hel->RegisterMe(chipsp);
202  pmanager->AddDiscreteProcess(hel);
203  if(verbose > 1) {
204  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
205  << " added for " << particle->GetParticleName() << G4endl;
206  }
207 
208  } else if(pname == "neutron") {
209 
210  neutronProcess = new G4HadronElasticProcess();
211  neutronProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(G4NeutronElasticXS::Default_Name()));
212  neutronProcess->RegisterMe(neutronModel);
213  pmanager->AddDiscreteProcess(neutronProcess);
214  if(verbose > 1) {
215  G4cout << "### HadronElasticPhysics: "
216  << neutronProcess->GetProcessName()
217  << " added for " << particle->GetParticleName() << G4endl;
218  }
219 
220  } else if (pname == "pi+" || pname == "pi-") {
221 
223  hel->AddDataSet(new G4BGGPionElasticXS(particle));
224  hel->RegisterMe(lhep1);
225  hel->RegisterMe(he);
226  pmanager->AddDiscreteProcess(hel);
227  if(verbose > 1) {
228  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
229  << " added for " << particle->GetParticleName() << G4endl;
230  }
231 
232  } else if(pname == "kaon-" ||
233  pname == "kaon+" ||
234  pname == "kaon0S" ||
235  pname == "kaon0L"
236  ) {
237 
239  //AR-14Aug2017 : Replaced Gheisha elastic kaon cross sections with
240  // Grichine's Glauber-Gribov ones. In this way, the
241  // total (elastic + inelastic) kaon cross sections
242  // are consistent with the PDG ones.
243  // For the time being, kept Gheisha elastic as
244  // final-state model.
245  hel->AddDataSet( theComponentGGHadronNucleusData );
246  hel->RegisterMe(lhep0);
247  pmanager->AddDiscreteProcess(hel);
248  if(verbose > 1) {
249  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
250  << " added for " << particle->GetParticleName() << G4endl;
251  }
252 
253  } else if(
254  pname == "anti_proton" ||
255  pname == "anti_alpha" ||
256  pname == "anti_deuteron" ||
257  pname == "anti_triton" ||
258  pname == "anti_He3" ) {
259 
261  hel->AddDataSet(anucxs);
262  hel->RegisterMe(lhep2);
263  hel->RegisterMe(anuc);
264  pmanager->AddDiscreteProcess(hel);
265  }
266  }
267 }
G4int AddDiscreteProcess(G4VProcess *aProcess, G4int ord=ordDefault)
G4ComponentAntiNuclNuclearXS * GetComponentCrossSection()
const G4String & GetParticleName() const
void RegisterMe(G4HadronicInteraction *a)
G4ParticleTable::G4PTblDicIterator * GetParticleIterator() const
void SetMinEnergy(G4double anEnergy)
void AddDataSet(G4VCrossSectionDataSet *aDataSet)
G4GLOB_DLL std::ostream G4cout
static G4CrossSectionDataSetRegistry * Instance()
const G4String & GetProcessName() const
Definition: G4VProcess.hh:408
string pname
Definition: eplot.py:33
G4ProcessManager * GetProcessManager() const
static constexpr double GeV
Definition: G4SIunits.hh:217
static const char * Default_Name()
void SetMaxEnergy(const G4double anEnergy)
static const char * Default_Name()
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
double G4double
Definition: G4Types.hh:76

Here is the call graph for this function:

Here is the caller graph for this function:

G4HadronElastic * G4HadronElasticPhysics::GetNeutronModel ( )

Definition at line 270 of file G4HadronElasticPhysics.cc.

271 {
272  return neutronModel;
273 }

Here is the caller graph for this function:

G4HadronicProcess * G4HadronElasticPhysics::GetNeutronProcess ( )

Definition at line 275 of file G4HadronElasticPhysics.cc.

276 {
277  return neutronProcess;
278 }

Here is the caller graph for this function:


The documentation for this class was generated from the following files: