Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4HadronElasticPhysics.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4HadronElasticPhysics.cc 106611 2017-10-16 14:51:20Z gcosmo $
27 //
28 //---------------------------------------------------------------------------
29 //
30 // ClassName: G4HadronElasticPhysics
31 //
32 // Author: 23 November 2006 V. Ivanchenko
33 //
34 // Modified:
35 // 21.03.2007 V.Ivanchenko Use G4BGGNucleonElasticXS and G4BGGPionElasticXS;
36 // Reduce thresholds for HE and Q-models to zero
37 // 03.06.2010 V.Ivanchenko cleanup constructors and ConstructProcess method
38 // 29.07.2010 V.Ivanchenko rename this class from G4HadronHElasticPhysics to
39 // G4HadronElasticPhysics, old version of the class
40 // is renamed to G4HadronElasticPhysics93
41 //
42 //----------------------------------------------------------------------------
43 //
44 // CHIPS for sampling scattering for p and n
45 // Glauber model for samplimg of high energy pi+- (E > 1GeV)
46 // LHEP sampling model for the other particle
47 // BBG cross sections for p, n and pi+-
48 // LHEP cross sections for other particles
49 
51 
52 #include "G4SystemOfUnits.hh"
53 #include "G4ParticleDefinition.hh"
54 #include "G4ProcessManager.hh"
55 
56 #include "G4MesonConstructor.hh"
57 #include "G4BaryonConstructor.hh"
58 #include "G4IonConstructor.hh"
59 
61 #include "G4HadronElastic.hh"
62 #include "G4ChipsElasticModel.hh"
64 #include "G4AntiNuclElastic.hh"
65 
68 
69 #include "G4BGGNucleonElasticXS.hh"
70 #include "G4BGGPionElasticXS.hh"
71 
73 
75 
76 #include "G4NeutronElasticXS.hh"
77 
78 #include "G4CrossSectionElastic.hh"
79 
80 // factory
82 //
84 //
85 G4ThreadLocal G4bool G4HadronElasticPhysics::wasActivated = false;
86 G4ThreadLocal G4HadronElastic* G4HadronElasticPhysics::neutronModel = 0;
87 G4ThreadLocal G4HadronicProcess* G4HadronElasticPhysics::neutronProcess = 0;
88 
90  : G4VPhysicsConstructor("hElasticWEL_CHIPS"), verbose(ver)
91 {
92  if(verbose > 1) {
93  G4cout << "### G4HadronElasticPhysics: " << GetPhysicsName()
94  << G4endl;
95  }
96 }
97 
99 {}
100 
102 {
103  // G4cout << "G4HadronElasticPhysics::ConstructParticle" << G4endl;
104  G4MesonConstructor pMesonConstructor;
105  pMesonConstructor.ConstructParticle();
106 
107  G4BaryonConstructor pBaryonConstructor;
108  pBaryonConstructor.ConstructParticle();
109 
110  G4IonConstructor pConstructor;
111  pConstructor.ConstructParticle();
112 }
113 
115 {
116  if(wasActivated) { return; }
117  wasActivated = true;
118 
119  const G4double elimitPi = 1.0*GeV;
120  const G4double elimitAntiNuc = 100.*MeV;
121  const G4double delta = 0.1*MeV;
122  if(verbose > 1) {
123  G4cout << "### HadronElasticPhysics::ConstructProcess: Elimit for pi "
124  << elimitPi/GeV << " GeV" << G4endl;
125  G4cout << " for anti-neuclei "
126  << elimitAntiNuc/GeV << " GeV" << G4endl;
127  }
128 
129  G4AntiNuclElastic* anuc = new G4AntiNuclElastic();
130  anuc->SetMinEnergy(elimitAntiNuc);
131  G4CrossSectionElastic* anucxs =
133 
134  G4HadronElastic* lhep0 = new G4HadronElastic();
135  G4HadronElastic* lhep1 = new G4HadronElastic();
136  G4HadronElastic* lhep2 = new G4HadronElastic();
137  lhep1->SetMaxEnergy(elimitPi+delta);
138  lhep2->SetMaxEnergy(elimitAntiNuc+delta);
139 
141  neutronModel = new G4ChipsElasticModel();
142 
144  he->SetMinEnergy(elimitPi);
145 
146  G4VCrossSectionDataSet* theComponentGGHadronNucleusData =
148 
149  auto myParticleIterator=GetParticleIterator();
150  myParticleIterator->reset();
151  while( (*myParticleIterator)() )
152  {
153  G4ParticleDefinition* particle = myParticleIterator->value();
154  G4ProcessManager* pmanager = particle->GetProcessManager();
155  G4String pname = particle->GetParticleName();
156  if(pname == "anti_lambda" ||
157  pname == "anti_neutron" ||
158  pname == "anti_omega-" ||
159  pname == "anti_sigma-" ||
160  pname == "anti_sigma+" ||
161  pname == "anti_xi-" ||
162  pname == "anti_xi0" ||
163  pname == "lambda" ||
164  pname == "omega-" ||
165  pname == "sigma-" ||
166  pname == "sigma+" ||
167  pname == "xi-" ||
168  pname == "alpha" ||
169  pname == "deuteron" ||
170  pname == "triton"
171  ) {
172 
174  hel->RegisterMe(lhep0);
175  pmanager->AddDiscreteProcess(hel);
176  if(verbose > 1) {
177  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
178  << " added for " << particle->GetParticleName() << G4endl;
179  }
180 
181  } else if(pname == "He3") {
183  G4VCrossSectionDataSet* theComponentGGNuclNuclData =
185  hel->AddDataSet(theComponentGGNuclNuclData);
186  hel->RegisterMe(lhep0);
187  pmanager->AddDiscreteProcess(hel);
188  if(verbose > 1) {
189  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
190  << " added for " << particle->GetParticleName() << G4endl;
191  }
192 
193  } else if(pname == "proton") {
194 
196  //hel->AddDataSet(new G4BGGNucleonElasticXS(particle));
197 
198  // hel->AddDataSet(new G4ChipsProtonElasticXS());
200 
201  hel->RegisterMe(chipsp);
202  pmanager->AddDiscreteProcess(hel);
203  if(verbose > 1) {
204  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
205  << " added for " << particle->GetParticleName() << G4endl;
206  }
207 
208  } else if(pname == "neutron") {
209 
210  neutronProcess = new G4HadronElasticProcess();
211  neutronProcess->AddDataSet(G4CrossSectionDataSetRegistry::Instance()->GetCrossSectionDataSet(G4NeutronElasticXS::Default_Name()));
212  neutronProcess->RegisterMe(neutronModel);
213  pmanager->AddDiscreteProcess(neutronProcess);
214  if(verbose > 1) {
215  G4cout << "### HadronElasticPhysics: "
216  << neutronProcess->GetProcessName()
217  << " added for " << particle->GetParticleName() << G4endl;
218  }
219 
220  } else if (pname == "pi+" || pname == "pi-") {
221 
223  hel->AddDataSet(new G4BGGPionElasticXS(particle));
224  hel->RegisterMe(lhep1);
225  hel->RegisterMe(he);
226  pmanager->AddDiscreteProcess(hel);
227  if(verbose > 1) {
228  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
229  << " added for " << particle->GetParticleName() << G4endl;
230  }
231 
232  } else if(pname == "kaon-" ||
233  pname == "kaon+" ||
234  pname == "kaon0S" ||
235  pname == "kaon0L"
236  ) {
237 
239  //AR-14Aug2017 : Replaced Gheisha elastic kaon cross sections with
240  // Grichine's Glauber-Gribov ones. In this way, the
241  // total (elastic + inelastic) kaon cross sections
242  // are consistent with the PDG ones.
243  // For the time being, kept Gheisha elastic as
244  // final-state model.
245  hel->AddDataSet( theComponentGGHadronNucleusData );
246  hel->RegisterMe(lhep0);
247  pmanager->AddDiscreteProcess(hel);
248  if(verbose > 1) {
249  G4cout << "### HadronElasticPhysics: " << hel->GetProcessName()
250  << " added for " << particle->GetParticleName() << G4endl;
251  }
252 
253  } else if(
254  pname == "anti_proton" ||
255  pname == "anti_alpha" ||
256  pname == "anti_deuteron" ||
257  pname == "anti_triton" ||
258  pname == "anti_He3" ) {
259 
261  hel->AddDataSet(anucxs);
262  hel->RegisterMe(lhep2);
263  hel->RegisterMe(anuc);
264  pmanager->AddDiscreteProcess(hel);
265  }
266  }
267 }
268 
269 
271 {
272  return neutronModel;
273 }
274 
276 {
277  return neutronProcess;
278 }
279 
280 
G4HadronElastic * GetNeutronModel()
G4HadronicProcess * GetNeutronProcess()
G4int AddDiscreteProcess(G4VProcess *aProcess, G4int ord=ordDefault)
static void ConstructParticle()
#define G4ThreadLocal
Definition: tls.hh:89
static void ConstructParticle()
int G4int
Definition: G4Types.hh:78
G4ComponentAntiNuclNuclearXS * GetComponentCrossSection()
const G4String & GetParticleName() const
static void ConstructParticle()
void RegisterMe(G4HadronicInteraction *a)
G4ParticleTable::G4PTblDicIterator * GetParticleIterator() const
void SetMinEnergy(G4double anEnergy)
void AddDataSet(G4VCrossSectionDataSet *aDataSet)
G4GLOB_DLL std::ostream G4cout
bool G4bool
Definition: G4Types.hh:79
static G4CrossSectionDataSetRegistry * Instance()
const G4String & GetPhysicsName() const
const G4String & GetProcessName() const
Definition: G4VProcess.hh:408
string pname
Definition: eplot.py:33
G4ProcessManager * GetProcessManager() const
static constexpr double GeV
Definition: G4SIunits.hh:217
static const char * Default_Name()
void SetMaxEnergy(const G4double anEnergy)
static const char * Default_Name()
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
double G4double
Definition: G4Types.hh:76
#define G4_DECLARE_PHYSCONSTR_FACTORY(physics_constructor)