Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4ElectroVDNuclearModel Class Reference

#include <G4ElectroVDNuclearModel.hh>

Inheritance diagram for G4ElectroVDNuclearModel:
Collaboration diagram for G4ElectroVDNuclearModel:

Public Member Functions

 G4ElectroVDNuclearModel ()
 
 ~G4ElectroVDNuclearModel ()
 
G4HadFinalStateApplyYourself (const G4HadProjectile &aTrack, G4Nucleus &aTargetNucleus)
 
virtual void ModelDescription (std::ostream &outFile) const
 
- Public Member Functions inherited from G4HadronicInteraction
 G4HadronicInteraction (const G4String &modelName="HadronicModel")
 
virtual ~G4HadronicInteraction ()
 
virtual G4double SampleInvariantT (const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
virtual G4bool IsApplicable (const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetMinEnergy () const
 
G4double GetMinEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMinEnergy (G4double anEnergy)
 
void SetMinEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMinEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4double GetMaxEnergy () const
 
G4double GetMaxEnergy (const G4Material *aMaterial, const G4Element *anElement) const
 
void SetMaxEnergy (const G4double anEnergy)
 
void SetMaxEnergy (G4double anEnergy, const G4Element *anElement)
 
void SetMaxEnergy (G4double anEnergy, const G4Material *aMaterial)
 
G4int GetVerboseLevel () const
 
void SetVerboseLevel (G4int value)
 
const G4StringGetModelName () const
 
void DeActivateFor (const G4Material *aMaterial)
 
void ActivateFor (const G4Material *aMaterial)
 
void DeActivateFor (const G4Element *anElement)
 
void ActivateFor (const G4Element *anElement)
 
G4bool IsBlocked (const G4Material *aMaterial) const
 
G4bool IsBlocked (const G4Element *anElement) const
 
void SetRecoilEnergyThreshold (G4double val)
 
G4double GetRecoilEnergyThreshold () const
 
virtual const std::pair
< G4double, G4double
GetFatalEnergyCheckLevels () const
 
virtual std::pair< G4double,
G4double
GetEnergyMomentumCheckLevels () const
 
void SetEnergyMomentumCheckLevels (G4double relativeLevel, G4double absoluteLevel)
 
virtual void BuildPhysicsTable (const G4ParticleDefinition &)
 
virtual void InitialiseModel ()
 

Additional Inherited Members

- Protected Member Functions inherited from G4HadronicInteraction
void SetModelName (const G4String &nam)
 
G4bool IsBlocked () const
 
void Block ()
 
- Protected Attributes inherited from G4HadronicInteraction
G4HadFinalState theParticleChange
 
G4int verboseLevel
 
G4double theMinEnergy
 
G4double theMaxEnergy
 
G4bool isBlocked
 

Detailed Description

Definition at line 50 of file G4ElectroVDNuclearModel.hh.

Constructor & Destructor Documentation

G4ElectroVDNuclearModel::G4ElectroVDNuclearModel ( )

Definition at line 63 of file G4ElectroVDNuclearModel.cc.

64  : G4HadronicInteraction("G4ElectroVDNuclearModel"),
65  leptonKE(0.0), photonEnergy(0.0), photonQ2(0.0)
66 {
67  SetMinEnergy(0.0);
68  SetMaxEnergy(1*PeV);
69  electroXS =
71  GetCrossSectionDataSet(G4ElectroNuclearCrossSection::Default_Name());
72  gammaXS =
74  GetCrossSectionDataSet(G4PhotoNuclearCrossSection::Default_Name());
75 
76  // reuse existing pre-compound model
77  G4GeneratorPrecompoundInterface* precoInterface
81  G4VPreCompoundModel* pre = static_cast<G4VPreCompoundModel*>(p);
82  if(!pre) { pre = new G4PreCompoundModel(); }
83  precoInterface->SetDeExcitation(pre);
84 
85  // string model
86  ftfp = new G4TheoFSGenerator();
87  ftfp->SetTransport(precoInterface);
88  theFragmentation = new G4LundStringFragmentation();
89  theStringDecay = new G4ExcitedStringDecay(theFragmentation);
90  G4FTFModel* theStringModel = new G4FTFModel();
91  theStringModel->SetFragmentationModel(theStringDecay);
92  ftfp->SetHighEnergyGenerator(theStringModel);
93 
94  // Build Bertini model
95  bert = new G4CascadeInterface();
96 }
void SetFragmentationModel(G4VStringFragmentation *aModel)
const char * p
Definition: xmltok.h:285
void SetHighEnergyGenerator(G4VHighEnergyGenerator *const value)
void SetMinEnergy(G4double anEnergy)
static G4CrossSectionDataSetRegistry * Instance()
G4HadronicInteraction(const G4String &modelName="HadronicModel")
static constexpr double PeV
Definition: G4SIunits.hh:219
G4HadronicInteraction * FindModel(const G4String &name)
static G4HadronicInteractionRegistry * Instance()
void SetMaxEnergy(const G4double anEnergy)
void SetDeExcitation(G4VPreCompoundModel *ptr)
void SetTransport(G4VIntraNuclearTransportModel *const value)

Here is the call graph for this function:

G4ElectroVDNuclearModel::~G4ElectroVDNuclearModel ( )

Definition at line 98 of file G4ElectroVDNuclearModel.cc.

99 {
100  delete theFragmentation;
101  delete theStringDecay;
102 }

Member Function Documentation

G4HadFinalState * G4ElectroVDNuclearModel::ApplyYourself ( const G4HadProjectile aTrack,
G4Nucleus aTargetNucleus 
)
virtual

Implements G4HadronicInteraction.

Definition at line 120 of file G4ElectroVDNuclearModel.cc.

122 {
123  // Set up default particle change (just returns initial state)
126  leptonKE = aTrack.GetKineticEnergy();
129 
130  // Set up sanity checks for real photon production
131  G4DynamicParticle lepton(aTrack.GetDefinition(), aTrack.Get4Momentum() );
132 
133  // Need to call GetElementCrossSection before calling GetEquivalentPhotonEnergy.
134  G4Material* mat = 0;
135  G4int targZ = targetNucleus.GetZ_asInt();
136  electroXS->GetElementCrossSection(&lepton, targZ, mat);
137 
138  photonEnergy = electroXS->GetEquivalentPhotonEnergy();
139  // Photon energy cannot exceed lepton energy
140  if (photonEnergy < leptonKE) {
141  photonQ2 = electroXS->GetEquivalentPhotonQ2(photonEnergy);
143  // Photon
144  if (photonEnergy > photonQ2/dM) {
145  // Produce recoil lepton and transferred photon
146  G4DynamicParticle* transferredPhoton = CalculateEMVertex(aTrack, targetNucleus);
147  // Interact gamma with nucleus
148  if (transferredPhoton) CalculateHadronicVertex(transferredPhoton, targetNucleus);
149  }
150  }
151  return &theParticleChange;
152 }
static const G4double dM
int G4int
Definition: G4Types.hh:78
void SetStatusChange(G4HadFinalStateStatus aS)
Hep3Vector vect() const
const G4ParticleDefinition * GetDefinition() const
G4double GetKineticEnergy() const
static G4Proton * Proton()
Definition: G4Proton.cc:93
static G4Neutron * Neutron()
Definition: G4Neutron.cc:104
const G4LorentzVector & Get4Momentum() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
virtual G4double GetElementCrossSection(const G4DynamicParticle *, G4int Z, const G4Material *mat)
Hep3Vector unit() const
double G4double
Definition: G4Types.hh:76
void SetMomentumChange(const G4ThreeVector &aV)

Here is the call graph for this function:

void G4ElectroVDNuclearModel::ModelDescription ( std::ostream &  outFile) const
virtual

Reimplemented from G4HadronicInteraction.

Definition at line 104 of file G4ElectroVDNuclearModel.cc.

105 {
106  outFile << "G4ElectroVDNuclearModel handles the inelastic scattering\n"
107  << "of e- and e+ from nuclei using the equivalent photon\n"
108  << "approximation in which the incoming lepton generates a\n"
109  << "virtual photon at the electromagnetic vertex, and the\n"
110  << "virtual photon is converted to a real photon. At low\n"
111  << "energies, the photon interacts directly with the nucleus\n"
112  << "using the Bertini cascade. At high energies the photon\n"
113  << "is converted to a pi0 which interacts using the FTFP\n"
114  << "model. The electro- and gamma-nuclear cross sections of\n"
115  << "M. Kossov are used to generate the virtual photon spectrum\n";
116 }

The documentation for this class was generated from the following files: