72 G4bool G4BogackiShampine45::fPreparedConstants= 
false;
 
   73 G4double G4BogackiShampine45::bi[12][7];
 
   77                                          G4int     noIntegrationVariables,
 
   81      fPreparedInterpolation(false)
 
   84     const G4int numberOfVariables = noIntegrationVariables;
 
   89     ak2 = 
new G4double[numberOfVariables];
 
   90     ak3 = 
new G4double[numberOfVariables];
 
   91     ak4 = 
new G4double[numberOfVariables];
 
   92     ak5 = 
new G4double[numberOfVariables];
 
   93     ak6 = 
new G4double[numberOfVariables];
 
   94     ak7 = 
new G4double[numberOfVariables];
 
   95     ak8 = 
new G4double[numberOfVariables];
 
   96     ak9 = 
new G4double[numberOfVariables];
 
   97     ak10 = 
new G4double[numberOfVariables];
 
   98     ak11 = 
new G4double[numberOfVariables];    
 
  100     for (
int i = 0; i < 6; i++) {
 
  112     fLastInitialVector = 
new G4double[numStateVars] ;
 
  113     fLastFinalVector = 
new G4double[numStateVars] ;
 
  114     fLastDyDx = 
new G4double[numberOfVariables];  
 
  116     fMidVector = 
new G4double[numberOfVariables];  
 
  117     fMidError =  
new G4double[numberOfVariables];  
 
  119     if( ! fPreparedConstants )
 
  143     for (
int i = 0; i < 6; i++) {
 
  150     delete[] fLastInitialVector;
 
  151     delete[] fLastFinalVector;
 
  168    for(
G4int i=0; i < numberOfVariables; i++ ){
 
  169       dyDxLast[i] = ak9[i];
 
  189        b31 = 2.0/27.0 ,     b32 = 4.0/27.0,
 
  191        b41 = 183.0/1372.0 , b42 = -162.0/343.0, b43 = 1053.0/1372.0,
 
  193        b51 = 68.0/297.0,    b52 = -4.0/11.0,
 
  194        b53 = 42.0/143.0,    b54 = 1960.0/3861.0,
 
  196        b61 = 597.0/22528.0,    b62 = 81.0/352.0,
 
  197        b63 = 63099.0/585728.0, b64 = 58653.0/366080.0,
 
  198        b65 = 4617.0/20480.0,
 
  200        b71 = 174197.0/959244.0,    b72 = -30942.0/79937.0,
 
  201        b73 = 8152137.0/19744439.0, b74 = 666106.0/1039181.0,
 
  202        b75 = -29421.0/29068.0,     b76 = 482048.0/414219.0,
 
  204        b81 = 587.0/8064.0,         b82 = 0.0,
 
  205        b83 = 4440339.0/15491840.0, b84 = 24353.0/124800.0,
 
  206        b85 = 387.0/44800.0,        b86 = 2152.0/5985.0,
 
  207        b87 = 7267.0/94080.0;
 
  223        dc1 = b81 -   2479.0 /   34992.0 ,
 
  225        dc3 = b83 -    123.0 /     416.0 ,
 
  226        dc4 = b84 - 612941.0 / 3411720.0,
 
  227        dc5 = b85 -     43.0 /    1440.0,
 
  228        dc6 = b86 -   2272.0 /    6561.0,
 
  229        dc7 = b87 -  79937.0 / 1113912.0,
 
  230        dc8 =     -   3293.0 /  556956.0;
 
  235     yOut[7] = yTemp[7]  = yIn[7];
 
  238     for(i=0;i<numberOfVariables;i++)
 
  246     for(i=0;i<numberOfVariables;i++)
 
  248         yTemp[i] = yIn[i] + b21*Step*DyDx[i] ;
 
  252     for(i=0;i<numberOfVariables;i++)
 
  254         yTemp[i] = yIn[i] + Step*(b31*DyDx[i] + b32*ak2[i]) ;
 
  258     for(i=0;i<numberOfVariables;i++)
 
  260         yTemp[i] = yIn[i] + Step*(b41*DyDx[i] + b42*ak2[i] + b43*ak3[i]) ;
 
  264     for(i=0;i<numberOfVariables;i++)
 
  266         yTemp[i] = yIn[i] + Step*(b51*DyDx[i] + b52*ak2[i] + b53*ak3[i] +
 
  271     for(i=0;i<numberOfVariables;i++)
 
  273         yTemp[i] = yIn[i] + Step*(b61*DyDx[i] + b62*ak2[i] + b63*ak3[i] +
 
  274                                   b64*ak4[i] + b65*ak5[i]) ;
 
  278     for(i=0;i<numberOfVariables;i++)
 
  280         yTemp[i] = yIn[i] + Step*(b71*DyDx[i] + b72*ak2[i] + b73*ak3[i] +
 
  281                                   b74*ak4[i] + b75*ak5[i] + b76*ak6[i]);
 
  285     for(i=0;i<numberOfVariables;i++)
 
  287         yOut[i] = yIn[i] + Step*(b81*DyDx[i] + b82*ak2[i] + b83*ak3[i] +
 
  288                                   b84*ak4[i] + b85*ak5[i] + b86*ak6[i] +
 
  293     for(i=0;i<numberOfVariables;i++)
 
  295         yErr[i] = Step*(dc1*DyDx[i] + dc2*ak2[i] + dc3*ak3[i] + dc4*ak4[i] +
 
  296                         dc5*ak5[i] + dc6*ak6[i] + dc7*ak7[i] + dc8*ak8[i]) ;
 
  299         fLastInitialVector[i] = yIn[i] ;
 
  300         fLastFinalVector[i]   = yOut[i];
 
  301         fLastDyDx[i]          = DyDx[i];
 
  304     fLastStepLength = Step;
 
  305     fPreparedInterpolation= 
false;
 
  321                                  fLastInitialVector[1], fLastInitialVector[2]);
 
  323                                  fLastFinalVector[1],  fLastFinalVector[2]);
 
  327     fAuxStepper->
Stepper( fLastInitialVector, fLastDyDx, 0.5 * fLastStepLength,
 
  328                            fMidVector,   fMidError);
 
  333     if( ! fPreparedInterpolation ) {
 
  344     midPoint = 
G4ThreeVector( fMidVector[0], fMidVector[1], fMidVector[2]);
 
  349     if (initialPoint != finalPoint)
 
  352         distChord = distLine;
 
  356         distChord = (midPoint-initialPoint).mag();
 
  368     a93 = 10256301.0/35409920.0 ,
 
  369     a94 = 2307361.0/17971200.0 ,
 
  370     a95 = -387.0/102400.0 ,
 
  372     a97 = -7267.0/215040.0 ,
 
  375     a101 = -837888343715.0/13176988637184.0 ,
 
  376     a102 = 30409415.0/52955362.0 ,
 
  377     a103 = -48321525963.0/759168069632.0 ,
 
  378     a104 = 8530738453321.0/197654829557760.0 ,
 
  379     a105 = 1361640523001.0/1626788720640.0 ,
 
  380     a106 = -13143060689.0/38604458898.0 ,
 
  381     a107 = 18700221969.0/379584034816.0 ,
 
  382     a108 = -5831595.0/847285792.0 ,
 
  383     a109 = -5183640.0/26477681.0 ,
 
  385     a111 = 98719073263.0/1551965184000.0 ,
 
  386     a112 = 1307.0/123552.0 ,
 
  387     a113 = 4632066559387.0/70181753241600.0 ,
 
  388     a114 = 7828594302389.0/382182512025600.0 ,
 
  389     a115 = 40763687.0/11070259200.0 ,
 
  390     a116 = 34872732407.0/224610586200.0 ,
 
  391     a117 = -2561897.0/30105600.0 ,
 
  394     a1110 = -1403317093.0/11371610250.0 ;
 
  405     for(
int i=0; i<numberOfVariables; i++){
 
  406         yTemp[i] = yIn[i] + Step*(a91*dydx[i] + a92*ak2[i] + a93*ak3[i] +
 
  407                                   a94*ak4[i] + a95*ak5[i] + a96*ak6[i] +
 
  408                                   a97*ak7[i] + a98*ak8[i] );
 
  413     for(
int i=0; i<numberOfVariables; i++){
 
  414         yTemp[i] = yIn[i] + Step*(a101*dydx[i] + a102*ak2[i] + a103*ak3[i] +
 
  415                                   a104*ak4[i] + a105*ak5[i] + a106*ak6[i] +
 
  416                                   a107*ak7[i] + a108*ak8[i] + a109*ak9[i] );
 
  421     for(
int i=0; i<numberOfVariables; i++){
 
  422         yTemp[i] = yIn[i] + Step*(a111*dydx[i] + a112*ak2[i] + a113*ak3[i] +
 
  423                                   a114*ak4[i] + a115*ak5[i] + a116*ak6[i] +
 
  424                                   a117*ak7[i] + a118*ak8[i] + a119*ak9[i] +
 
  430     int nwant = numberOfVariables; 
 
  436     for (
int l = 0; l < nwant; l++) {
 
  438         p[5][l] =   bi[5][6]*ak5[l] +
 
  439                   ((bi[10][6]*ak10[l] + bi[8][6]*ak8[l]) + 
 
  440                    (bi[7][6]*ak7[l] + bi[6][6]*ak6[l]))  + 
 
  441                   ((bi[4][6]*ak4[l] + bi[9][6]*ak9[l]) + 
 
  442                    (bi[3][6]*ak3[l] + bi[11][6]*ak11[l]) + 
 
  445         p[4][l] = (bi[10][5]*ak10[l] + bi[9][5]*ak9[l])  + 
 
  446                  ((bi[7][5]*ak7[l] + bi[6][5]*ak6[l]) + 
 
  447                    bi[5][5]*ak5[l])  +  ((bi[4][5]*ak4[l] + 
 
  448                    bi[8][5]*ak8[l]) + (bi[3][5]*ak3[l] + 
 
  449                    bi[11][5]*ak11[l]) + bi[1][5]*dydx[l]);
 
  451         p[3][l] = ((bi[4][4]*ak4[l] + bi[8][4]*ak8[l]) + 
 
  452                    (bi[7][4]*ak7[l] + bi[6][4]*ak6[l]) + 
 
  453                     bi[5][4]*ak5[l]) + ((bi[10][4]*ak10[l] + 
 
  454                     bi[9][4]*ak9[l]) +  (bi[3][4]*ak3[l] + 
 
  455                     bi[11][4]*ak11[l]) + bi[1][4]*dydx[l]);
 
  457         p[2][l] =  bi[5][3]*ak5[l] + bi[6][3]*ak6[l]  + 
 
  458                  ((bi[3][3]*ak3[l] + bi[9][3]*ak9[l]) + 
 
  459                  (bi[10][3]*ak10[l]+ bi[8][3]*ak8[l]) + bi[1][3]*dydx[l]) + 
 
  460                  ((bi[4][3]*ak4[l] + bi[11][3]*ak11[l]) + bi[7][3]*ak7[l]);
 
  462         p[1][l] = bi[5][2]*ak5[l]  + ((bi[6][2]*ak6[l] + 
 
  463                   bi[8][2]*ak8[l]) +   bi[1][2]*dydx[l])  + 
 
  464                 ((bi[3][2]*ak3[l]  +   bi[9][2]*ak9[l]) + 
 
  465                  bi[10][2]*ak10[l])+ ((bi[4][2]*ak4[l] + 
 
  466                  bi[11][2]*ak2[l]) +   bi[7][2]*ak7[l]);
 
  471       for (
int i = 0; i < 6; i++) {
 
  472          for (
int l = 0; l < nwant; l++) {  
 
  477     fPreparedInterpolation= 
true;
 
  482     for(
int i=1; i<= 11; i++)
 
  485     for(
int i=1; i<=6; i++)
 
  488     bi[1][6] = -12134338393.0 / 1050809760.0 ,
 
  489     bi[1][5] =  -1620741229.0 / 50038560.0 ,
 
  490     bi[1][4] =  -2048058893.0 / 59875200.0 ,
 
  491     bi[1][3] = -87098480009.0 / 5254048800.0 ,
 
  492     bi[1][2] = -11513270273.0 / 3502699200.0 ,
 
  494     bi[3][6] =  -33197340367.0 / 1218433216.0 ,
 
  495     bi[3][5] = -539868024987.0 / 6092166080.0 ,
 
  496     bi[3][4] =  -39991188681.0 / 374902528.0 ,
 
  497     bi[3][3] =  -69509738227.0 / 1218433216.0 ,
 
  498     bi[3][2] =  -29327744613.0 / 2436866432.0 ,
 
  500     bi[4][6] =   -284800997201.0 /  19905339168.0 ,
 
  501     bi[4][5] =  -7896875450471.0 / 165877826400.0 ,
 
  502     bi[4][4] =   -333945812879.0 /   5671036800.0 ,
 
  503     bi[4][3] = -16209923456237.0 / 497633479200.0 ,
 
  504     bi[4][2] =  -2382590741699.0 / 331755652800.0 ,
 
  506     bi[5][6] = -540919.0 / 741312.0 ,
 
  507     bi[5][5] = -103626067.0 / 43243200.0 ,
 
  508     bi[5][4] = -633779.0 / 211200.0 ,
 
  509     bi[5][3] = -32406787.0 / 18532800.0 ,
 
  510     bi[5][2] = -36591193.0 / 86486400.0 ,
 
  512     bi[6][6] = 7157998304.0 / 374350977.0 ,
 
  513     bi[6][5] = 30405842464.0 / 623918295.0 ,
 
  514     bi[6][4] = 183022264.0 / 5332635.0 ,
 
  515     bi[6][3] = -3357024032.0 / 1871754885.0 ,
 
  516     bi[6][2] = -611586736.0 / 89131185.0 ,
 
  518     bi[7][6] =  -138073.0 /  9408.0 ,
 
  519     bi[7][5] =  -719433.0 / 15680.0 ,
 
  520     bi[7][4] = -1620541.0 / 31360.0 ,
 
  521     bi[7][3] =  -385151.0 / 15680.0 ,
 
  522     bi[7][2] =  -65403.0  / 15680.0 ,
 
  524     bi[8][6] = 1245.0 / 64.0 ,
 
  525     bi[8][5] = 3991.0 / 64.0 ,
 
  526     bi[8][4] = 4715.0 / 64.0 ,
 
  527     bi[8][3] = 2501.0 / 64.0 ,
 
  528     bi[8][2] =  149.0 / 16.0 ,
 
  531     bi[9][6] = 55.0 / 3.0 ,
 
  534     bi[9][3] = 199.0 / 3.0 ,
 
  537     bi[10][6] =  -1774004627.0  /  75810735.0 ,
 
  538     bi[10][5] =  -1774004627.0  /  25270245.0 ,
 
  539     bi[10][4] =    -26477681.0  /    359975.0 ,
 
  540     bi[10][3] = -11411880511.0  / 379053675.0 ,
 
  541     bi[10][2] =   -423642896.0  / 126351225.0 ,
 
  548     fPreparedConstants= 
true;
 
  554     G4int numberOfVariables = this->GetNumberOfVariables();
 
  555     assert( fPreparedConstants);
 
  557     G4Exception(
"G4BogackiShampine45::InterpolateHigh()", 
"GeomField0001",
 
  566     G4int nwant = numberOfVariables;
 
  567     const G4int norder= 6;
 
  570     for (l = 0; l < nwant; l++) {
 
  571       yOut[l] = 
p[norder-1][l] * tau;
 
  573     for (k = norder - 2; k >= 1; k--) {
 
  574       for (l = 0; l < nwant; l++) {
 
  575          yOut[l] = ( yOut[l] + 
p[k][l] ) * tau;
 
  578     for (l = 0; l < nwant; l++) {
 
  579       yOut[l] = ( yOut[l] + Step * ak8[l] ) * tau + yIn[l];
 
  589     for(
int iStage=1; iStage<=11; iStage++){    
 
  592         for(
int j=6; j>=1; j--){        
 
  593             b[iStage] += bi[iStage][j] * tau;
 
  598     for(
int i=0; i<numberOfVariables; i++){
 
  599         yOut[i] = yIn[i] + Step*(b[1] * dydx[i] + b[2] * 
ak2[i] + b[3] * ak3[i] +
 
  600                                  b[4] *  ak4[i] + b[5] * ak5[i] + b[6] * ak6[i] +
 
  601                                  b[7] *  ak7[i] + b[8] * ak8[i] + b[9] * ak9[i] +
 
  602                                  b[10] * ak10[i] + b[11] * ak11[i] );
 
G4BogackiShampine45(G4EquationOfMotion *EqRhs, G4int numberOfVariables=6, G4bool primary=true)
 
void InterpolateHigh(G4double tau, G4double yOut[]) const 
 
void SetupInterpolationHigh()
 
CLHEP::Hep3Vector G4ThreeVector
 
static const G4double ak2
 
static G4double Distline(const G4ThreeVector &OtherPnt, const G4ThreeVector &LinePntA, const G4ThreeVector &LinePntB)
 
void Stepper(const G4double y[], const G4double dydx[], G4double h, G4double yout[], G4double yerr[])
 
G4int GetNumberOfVariables() const 
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
T max(const T t1, const T t2)
brief Return the largest of the two arguments 
 
G4int GetNumberOfStateVariables() const 
 
void GetLastDydx(G4double dyDxLast[])
 
void RightHandSide(const double y[], double dydx[])
 
G4double DistChord() const