Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4Paraboloid.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4Paraboloid.cc 101819 2016-12-01 08:13:36Z gcosmo $
27 //
28 // class G4Paraboloid
29 //
30 // Implementation for G4Paraboloid class
31 //
32 // Author : Lukas Lindroos (CERN), July 2007
33 // Revised: Tatiana Nikitina (CERN)
34 // --------------------------------------------------------------------
35 
36 #include "globals.hh"
37 
38 #include "G4Paraboloid.hh"
39 
40 #if !(defined(G4GEOM_USE_UPARABOLOID) && defined(G4GEOM_USE_SYS_USOLIDS))
41 
42 #include "G4VoxelLimits.hh"
43 #include "G4AffineTransform.hh"
44 #include "G4BoundingEnvelope.hh"
45 
46 #include "meshdefs.hh"
47 
48 #include "Randomize.hh"
49 
50 #include "G4VGraphicsScene.hh"
51 #include "G4VisExtent.hh"
52 
53 #include "G4AutoLock.hh"
54 
55 namespace
56 {
57  G4Mutex polyhedronMutex = G4MUTEX_INITIALIZER;
58 }
59 
60 using namespace CLHEP;
61 
63 //
64 // constructor - check parameters
65 
67  G4double pDz,
68  G4double pR1,
69  G4double pR2)
70  : G4VSolid(pName), fRebuildPolyhedron(false), fpPolyhedron(0),
71  fSurfaceArea(0.), fCubicVolume(0.)
72 
73 {
74  if( (pDz <= 0.) || (pR2 <= pR1) || (pR1 < 0.) )
75  {
76  std::ostringstream message;
77  message << "Invalid dimensions. Negative Input Values or R1>=R2 - "
78  << GetName();
79  G4Exception("G4Paraboloid::G4Paraboloid()", "GeomSolids0002",
80  FatalErrorInArgument, message,
81  "Z half-length must be larger than zero or R1>=R2.");
82  }
83 
84  r1 = pR1;
85  r2 = pR2;
86  dz = pDz;
87 
88  // r1^2 = k1 * (-dz) + k2
89  // r2^2 = k1 * ( dz) + k2
90  // => r1^2 + r2^2 = k2 + k2 => k2 = (r2^2 + r1^2) / 2
91  // and r2^2 - r1^2 = k1 * dz - k1 * (-dz) => k1 = (r2^2 - r1^2) / 2 / dz
92 
93  k1 = (r2 * r2 - r1 * r1) / 2 / dz;
94  k2 = (r2 * r2 + r1 * r1) / 2;
95 }
96 
98 //
99 // Fake default constructor - sets only member data and allocates memory
100 // for usage restricted to object persistency.
101 //
103  : G4VSolid(a), fRebuildPolyhedron(false), fpPolyhedron(0),
104  fSurfaceArea(0.), fCubicVolume(0.),
105  dz(0.), r1(0.), r2(0.), k1(0.), k2(0.)
106 {
107 }
108 
110 //
111 // Destructor
112 
114 {
115  delete fpPolyhedron; fpPolyhedron = 0;
116 }
117 
119 //
120 // Copy constructor
121 
123  : G4VSolid(rhs), fRebuildPolyhedron(false), fpPolyhedron(0),
124  fSurfaceArea(rhs.fSurfaceArea), fCubicVolume(rhs.fCubicVolume),
125  dz(rhs.dz), r1(rhs.r1), r2(rhs.r2), k1(rhs.k1), k2(rhs.k2)
126 {
127 }
128 
129 
131 //
132 // Assignment operator
133 
135 {
136  // Check assignment to self
137  //
138  if (this == &rhs) { return *this; }
139 
140  // Copy base class data
141  //
142  G4VSolid::operator=(rhs);
143 
144  // Copy data
145  //
146  fSurfaceArea = rhs.fSurfaceArea; fCubicVolume = rhs.fCubicVolume;
147  dz = rhs.dz; r1 = rhs.r1; r2 = rhs.r2; k1 = rhs.k1; k2 = rhs.k2;
148  fRebuildPolyhedron = false;
149  delete fpPolyhedron; fpPolyhedron = 0;
150 
151  return *this;
152 }
153 
155 //
156 // Dispatch to parameterisation for replication mechanism dimension
157 // computation & modification.
158 
159 //void ComputeDimensions( G4VPVParamerisation p,
160 // const G4Int n,
161 // const G4VPhysicalVolume* pRep )
162 //{
163 // p->ComputeDimensions(*this,n,pRep) ;
164 //}
165 
167 //
168 // Get bounding box
169 
171 {
172  pMin.set(-r2,-r2,-dz);
173  pMax.set( r2, r2, dz);
174 
175  // Check correctness of the bounding box
176  //
177  if (pMin.x() >= pMax.x() || pMin.y() >= pMax.y() || pMin.z() >= pMax.z())
178  {
179  std::ostringstream message;
180  message << "Bad bounding box (min >= max) for solid: "
181  << GetName() << " !"
182  << "\npMin = " << pMin
183  << "\npMax = " << pMax;
184  G4Exception("G4Paraboloid::Extent()", "GeomMgt0001", JustWarning, message);
185  DumpInfo();
186  }
187 }
188 
190 //
191 // Calculate extent under transform and specified limit
192 
193 G4bool
195  const G4VoxelLimits& pVoxelLimit,
196  const G4AffineTransform& pTransform,
197  G4double& pMin, G4double& pMax) const
198 {
199  G4ThreeVector bmin, bmax;
200 
201  // Get bounding box
202  Extent(bmin,bmax);
203 
204  // Find extent
205  G4BoundingEnvelope bbox(bmin,bmax);
206  return bbox.CalculateExtent(pAxis,pVoxelLimit,pTransform,pMin,pMax);
207 }
208 
210 //
211 // Return whether point inside/outside/on surface
212 
214 {
215  // First check is the point is above or below the solid.
216  //
217  if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance) { return kOutside; }
218 
219  G4double rho2 = p.perp2(),
220  rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance),
221  A = rho2 - ((k1 *p.z() + k2) + 0.25 * kCarTolerance * kCarTolerance);
222 
223  if(A < 0 && sqr(A) > rhoSurfTimesTol2)
224  {
225  // Actually checking rho < radius of paraboloid at z = p.z().
226  // We're either inside or in lower/upper cutoff area.
227 
228  if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance)
229  {
230  // We're in the upper/lower cutoff area, sides have a paraboloid shape
231  // maybe further checks should be made to make these nicer
232 
233  return kSurface;
234  }
235  else
236  {
237  return kInside;
238  }
239  }
240  else if(A <= 0 || sqr(A) < rhoSurfTimesTol2)
241  {
242  // We're in the parabolic surface.
243 
244  return kSurface;
245  }
246  else
247  {
248  return kOutside;
249  }
250 }
251 
253 //
254 
256 {
257  G4ThreeVector n(0, 0, 0);
258  if(std::fabs(p.z()) > dz + 0.5 * kCarTolerance)
259  {
260  // If above or below just return normal vector for the cutoff plane.
261 
262  n = G4ThreeVector(0, 0, p.z()/std::fabs(p.z()));
263  }
264  else if(std::fabs(p.z()) > dz - 0.5 * kCarTolerance)
265  {
266  // This means we're somewhere in the plane z = dz or z = -dz.
267  // (As far as the program is concerned anyway.
268 
269  if(p.z() < 0) // Are we in upper or lower plane?
270  {
271  if(p.perp2() > sqr(r1 + 0.5 * kCarTolerance))
272  {
273  n = G4ThreeVector(p.x(), p.y(), -k1 / 2).unit();
274  }
275  else if(r1 < 0.5 * kCarTolerance
276  || p.perp2() > sqr(r1 - 0.5 * kCarTolerance))
277  {
278  n = G4ThreeVector(p.x(), p.y(), 0.).unit()
279  + G4ThreeVector(0., 0., -1.).unit();
280  n = n.unit();
281  }
282  else
283  {
284  n = G4ThreeVector(0., 0., -1.);
285  }
286  }
287  else
288  {
289  if(p.perp2() > sqr(r2 + 0.5 * kCarTolerance))
290  {
291  n = G4ThreeVector(p.x(), p.y(), 0.).unit();
292  }
293  else if(r2 < 0.5 * kCarTolerance
294  || p.perp2() > sqr(r2 - 0.5 * kCarTolerance))
295  {
296  n = G4ThreeVector(p.x(), p.y(), 0.).unit()
297  + G4ThreeVector(0., 0., 1.).unit();
298  n = n.unit();
299  }
300  else
301  {
302  n = G4ThreeVector(0., 0., 1.);
303  }
304  }
305  }
306  else
307  {
308  G4double rho2 = p.perp2();
309  G4double rhoSurfTimesTol2 = (k1 * p.z() + k2) * sqr(kCarTolerance);
310  G4double A = rho2 - ((k1 *p.z() + k2)
311  + 0.25 * kCarTolerance * kCarTolerance);
312 
313  if(A < 0 && sqr(A) > rhoSurfTimesTol2)
314  {
315  // Actually checking rho < radius of paraboloid at z = p.z().
316  // We're inside.
317 
318  if(p.mag2() != 0) { n = p.unit(); }
319  }
320  else if(A <= 0 || sqr(A) < rhoSurfTimesTol2)
321  {
322  // We're in the parabolic surface.
323 
324  n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit();
325  }
326  else
327  {
328  n = G4ThreeVector(p.x(), p.y(), - k1 / 2).unit();
329  }
330  }
331 
332  if(n.mag2() == 0)
333  {
334  std::ostringstream message;
335  message << "No normal defined for this point p." << G4endl
336  << " p = " << 1 / mm * p << " mm";
337  G4Exception("G4Paraboloid::SurfaceNormal(p)", "GeomSolids1002",
338  JustWarning, message);
339  }
340  return n;
341 }
342 
344 //
345 // Calculate distance to shape from outside, along normalised vector
346 // - return kInfinity if no intersection
347 //
348 
350  const G4ThreeVector& v ) const
351 {
352  G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2);
354  G4double tolh = 0.5*kCarTolerance;
355 
356  if(r2 && p.z() > - tolh + dz)
357  {
358  // If the points is above check for intersection with upper edge.
359 
360  if(v.z() < 0)
361  {
362  G4double intersection = (dz - p.z()) / v.z(); // With plane z = dz.
363  if(sqr(p.x() + v.x()*intersection)
364  + sqr(p.y() + v.y()*intersection) < sqr(r2 + 0.5 * kCarTolerance))
365  {
366  if(p.z() < tolh + dz)
367  { return 0; }
368  else
369  { return intersection; }
370  }
371  }
372  else // Direction away, no possibility of intersection
373  {
374  return kInfinity;
375  }
376  }
377  else if(r1 && p.z() < tolh - dz)
378  {
379  // If the points is belove check for intersection with lower edge.
380 
381  if(v.z() > 0)
382  {
383  G4double intersection = (-dz - p.z()) / v.z(); // With plane z = -dz.
384  if(sqr(p.x() + v.x()*intersection)
385  + sqr(p.y() + v.y()*intersection) < sqr(r1 + 0.5 * kCarTolerance))
386  {
387  if(p.z() > -tolh - dz)
388  {
389  return 0;
390  }
391  else
392  {
393  return intersection;
394  }
395  }
396  }
397  else // Direction away, no possibility of intersection
398  {
399  return kInfinity;
400  }
401  }
402 
403  G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y(),
404  vRho2 = v.perp2(), intersection,
405  B = (k1 * p.z() + k2 - rho2) * vRho2;
406 
407  if ( ( (rho2 > paraRho2) && (sqr(rho2-paraRho2-0.25*tol2) > tol2*paraRho2) )
408  || (p.z() < - dz+kCarTolerance)
409  || (p.z() > dz-kCarTolerance) ) // Make sure it's safely outside.
410  {
411  // Is there a problem with squaring rho twice?
412 
413  if(vRho2<tol2) // Needs to be treated seperately.
414  {
415  intersection = ((rho2 - k2)/k1 - p.z())/v.z();
416  if(intersection < 0) { return kInfinity; }
417  else if(std::fabs(p.z() + v.z() * intersection) <= dz)
418  {
419  return intersection;
420  }
421  else
422  {
423  return kInfinity;
424  }
425  }
426  else if(A*A + B < 0) // No real intersections.
427  {
428  return kInfinity;
429  }
430  else
431  {
432  intersection = (A - std::sqrt(B + sqr(A))) / vRho2;
433  if(intersection < 0)
434  {
435  return kInfinity;
436  }
437  else if(std::fabs(p.z() + intersection * v.z()) < dz + tolh)
438  {
439  return intersection;
440  }
441  else
442  {
443  return kInfinity;
444  }
445  }
446  }
447  else if(sqr(rho2 - paraRho2 - .25 * tol2) <= tol2 * paraRho2)
448  {
449  // If this is true we're somewhere in the border.
450 
451  G4ThreeVector normal(p.x(), p.y(), -k1/2);
452  if(normal.dot(v) <= 0)
453  { return 0; }
454  else
455  { return kInfinity; }
456  }
457  else
458  {
459  std::ostringstream message;
460  if(Inside(p) == kInside)
461  {
462  message << "Point p is inside! - " << GetName() << G4endl;
463  }
464  else
465  {
466  message << "Likely a problem in this function, for solid: " << GetName()
467  << G4endl;
468  }
469  message << " p = " << p * (1/mm) << " mm" << G4endl
470  << " v = " << v * (1/mm) << " mm";
471  G4Exception("G4Paraboloid::DistanceToIn(p,v)", "GeomSolids1002",
472  JustWarning, message);
473  return 0;
474  }
475 }
476 
478 //
479 // Calculate distance (<= actual) to closest surface of shape from outside
480 // - Return 0 if point inside
481 
483 {
484  G4double safz = -dz+std::fabs(p.z());
485  if(safz<0) { safz=0; }
486  G4double safr = kInfinity;
487 
488  G4double rho = p.x()*p.x()+p.y()*p.y();
489  G4double paraRho = (p.z()-k2)/k1;
490  G4double sqrho = std::sqrt(rho);
491 
492  if(paraRho<0)
493  {
494  safr=sqrho-r2;
495  if(safr>safz) { safz=safr; }
496  return safz;
497  }
498 
499  G4double sqprho = std::sqrt(paraRho);
500  G4double dRho = sqrho-sqprho;
501  if(dRho<0) { return safz; }
502 
503  G4double talf = -2.*k1*sqprho;
504  G4double tmp = 1+talf*talf;
505  if(tmp<0.) { return safz; }
506 
507  G4double salf = talf/std::sqrt(tmp);
508  safr = std::fabs(dRho*salf);
509  if(safr>safz) { safz=safr; }
510 
511  return safz;
512 }
513 
515 //
516 // Calculate distance to surface of shape from 'inside'
517 
519  const G4ThreeVector& v,
520  const G4bool calcNorm,
521  G4bool *validNorm,
522  G4ThreeVector *n ) const
523 {
524  G4double rho2 = p.perp2(), paraRho2 = std::fabs(k1 * p.z() + k2);
525  G4double vRho2 = v.perp2(), intersection;
527  G4double tolh = 0.5*kCarTolerance;
528 
529  if(calcNorm) { *validNorm = false; }
530 
531  // We have that the particle p follows the line x = p + s * v
532  // meaning x = p.x() + s * v.x(), y = p.y() + s * v.y() and
533  // z = p.z() + s * v.z()
534  // The equation for all points on the surface (surface expanded for
535  // to include all z) x^2 + y^2 = k1 * z + k2 => .. =>
536  // => s = (A +- std::sqrt(A^2 + B)) / vRho2
537  // where:
538  //
539  G4double A = k1 / 2 * v.z() - p.x() * v.x() - p.y() * v.y();
540  //
541  // and:
542  //
543  G4double B = (-rho2 + paraRho2) * vRho2;
544 
545  if ( rho2 < paraRho2 && sqr(rho2 - paraRho2 - 0.25 * tol2) > tol2 * paraRho2
546  && std::fabs(p.z()) < dz - kCarTolerance)
547  {
548  // Make sure it's safely inside.
549 
550  if(v.z() > 0)
551  {
552  // It's heading upwards, check where it colides with the plane z = dz.
553  // When it does, is that in the surface of the paraboloid.
554  // z = p.z() + variable * v.z() for all points the particle can go.
555  // => variable = (z - p.z()) / v.z() so intersection must be:
556 
557  intersection = (dz - p.z()) / v.z();
558  G4ThreeVector ip = p + intersection * v; // Point of intersection.
559 
560  if(ip.perp2() < sqr(r2 + kCarTolerance))
561  {
562  if(calcNorm)
563  {
564  *n = G4ThreeVector(0, 0, 1);
565  if(r2 < tolh || ip.perp2() > sqr(r2 - tolh))
566  {
567  *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
568  *n = n->unit();
569  }
570  *validNorm = true;
571  }
572  return intersection;
573  }
574  }
575  else if(v.z() < 0)
576  {
577  // It's heading downwards, check were it colides with the plane z = -dz.
578  // When it does, is that in the surface of the paraboloid.
579  // z = p.z() + variable * v.z() for all points the particle can go.
580  // => variable = (z - p.z()) / v.z() so intersection must be:
581 
582  intersection = (-dz - p.z()) / v.z();
583  G4ThreeVector ip = p + intersection * v; // Point of intersection.
584 
585  if(ip.perp2() < sqr(r1 + tolh))
586  {
587  if(calcNorm)
588  {
589  *n = G4ThreeVector(0, 0, -1);
590  if(r1 < tolh || ip.perp2() > sqr(r1 - tolh))
591  {
592  *n += G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
593  *n = n->unit();
594  }
595  *validNorm = true;
596  }
597  return intersection;
598  }
599  }
600 
601  // Now check for collisions with paraboloid surface.
602 
603  if(vRho2 == 0) // Needs to be treated seperately.
604  {
605  intersection = ((rho2 - k2)/k1 - p.z())/v.z();
606  if(calcNorm)
607  {
608  G4ThreeVector intersectionP = p + v * intersection;
609  *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2);
610  *n = n->unit();
611 
612  *validNorm = true;
613  }
614  return intersection;
615  }
616  else if( ((A <= 0) && (B >= sqr(A) * (sqr(vRho2) - 1))) || (A >= 0))
617  {
618  // intersection = (A + std::sqrt(B + sqr(A))) / vRho2;
619  // The above calculation has a precision problem:
620  // known problem of solving quadratic equation with small A
621 
622  A = A/vRho2;
623  B = (k1 * p.z() + k2 - rho2)/vRho2;
624  intersection = B/(-A + std::sqrt(B + sqr(A)));
625  if(calcNorm)
626  {
627  G4ThreeVector intersectionP = p + v * intersection;
628  *n = G4ThreeVector(intersectionP.x(), intersectionP.y(), -k1/2);
629  *n = n->unit();
630  *validNorm = true;
631  }
632  return intersection;
633  }
634  std::ostringstream message;
635  message << "There is no intersection between given line and solid!"
636  << G4endl
637  << " p = " << p << G4endl
638  << " v = " << v;
639  G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "GeomSolids1002",
640  JustWarning, message);
641 
642  return kInfinity;
643  }
644  else if ( (rho2 < paraRho2 + kCarTolerance
645  || sqr(rho2 - paraRho2 - 0.25 * tol2) < tol2 * paraRho2 )
646  && std::fabs(p.z()) < dz + tolh)
647  {
648  // If this is true we're somewhere in the border.
649 
650  G4ThreeVector normal = G4ThreeVector (p.x(), p.y(), -k1/2);
651 
652  if(std::fabs(p.z()) > dz - tolh)
653  {
654  // We're in the lower or upper edge
655  //
656  if( ((v.z() > 0) && (p.z() > 0)) || ((v.z() < 0) && (p.z() < 0)) )
657  { // If we're heading out of the object that is treated here
658  if(calcNorm)
659  {
660  *validNorm = true;
661  if(p.z() > 0)
662  { *n = G4ThreeVector(0, 0, 1); }
663  else
664  { *n = G4ThreeVector(0, 0, -1); }
665  }
666  return 0;
667  }
668 
669  if(v.z() == 0)
670  {
671  // Case where we're moving inside the surface needs to be
672  // treated separately.
673  // Distance until it goes out through a side is returned.
674 
675  G4double r = (p.z() > 0)? r2 : r1;
676  G4double pDotV = p.dot(v);
677  A = vRho2 * ( sqr(r) - sqr(p.x()) - sqr(p.y()));
678  intersection = (-pDotV + std::sqrt(A + sqr(pDotV))) / vRho2;
679 
680  if(calcNorm)
681  {
682  *validNorm = true;
683 
684  *n = (G4ThreeVector(0, 0, p.z()/std::fabs(p.z()))
685  + G4ThreeVector(p.x() + v.x() * intersection, p.y() + v.y()
686  * intersection, -k1/2).unit()).unit();
687  }
688  return intersection;
689  }
690  }
691  //
692  // Problem in the Logic :: Following condition for point on upper surface
693  // and Vz<0 will return 0 (Problem #1015), but
694  // it has to return intersection with parabolic
695  // surface or with lower plane surface (z = -dz)
696  // The logic has to be :: If not found intersection until now,
697  // do not exit but continue to search for possible intersection.
698  // Only for point situated on both borders (Z and parabolic)
699  // this condition has to be taken into account and done later
700  //
701  //
702  // else if(normal.dot(v) >= 0)
703  // {
704  // if(calcNorm)
705  // {
706  // *validNorm = true;
707  // *n = normal.unit();
708  // }
709  // return 0;
710  // }
711 
712  if(v.z() > 0)
713  {
714  // Check for collision with upper edge.
715 
716  intersection = (dz - p.z()) / v.z();
717  G4ThreeVector ip = p + intersection * v;
718 
719  if(ip.perp2() < sqr(r2 - tolh))
720  {
721  if(calcNorm)
722  {
723  *validNorm = true;
724  *n = G4ThreeVector(0, 0, 1);
725  }
726  return intersection;
727  }
728  else if(ip.perp2() < sqr(r2 + tolh))
729  {
730  if(calcNorm)
731  {
732  *validNorm = true;
733  *n = G4ThreeVector(0, 0, 1)
734  + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
735  *n = n->unit();
736  }
737  return intersection;
738  }
739  }
740  if( v.z() < 0)
741  {
742  // Check for collision with lower edge.
743 
744  intersection = (-dz - p.z()) / v.z();
745  G4ThreeVector ip = p + intersection * v;
746 
747  if(ip.perp2() < sqr(r1 - tolh))
748  {
749  if(calcNorm)
750  {
751  *validNorm = true;
752  *n = G4ThreeVector(0, 0, -1);
753  }
754  return intersection;
755  }
756  else if(ip.perp2() < sqr(r1 + tolh))
757  {
758  if(calcNorm)
759  {
760  *validNorm = true;
761  *n = G4ThreeVector(0, 0, -1)
762  + G4ThreeVector(ip.x(), ip.y(), - k1 / 2).unit();
763  *n = n->unit();
764  }
765  return intersection;
766  }
767  }
768 
769  // Note: comparison with zero below would not be correct !
770  //
771  if(std::fabs(vRho2) > tol2) // precision error in the calculation of
772  { // intersection = (A+std::sqrt(B+sqr(A)))/vRho2
773  A = A/vRho2;
774  B = (k1 * p.z() + k2 - rho2);
775  if(std::fabs(B)>kCarTolerance)
776  {
777  B = (B)/vRho2;
778  intersection = B/(-A + std::sqrt(B + sqr(A)));
779  }
780  else // Point is On both borders: Z and parabolic
781  { // solution depends on normal.dot(v) sign
782  if(normal.dot(v) >= 0)
783  {
784  if(calcNorm)
785  {
786  *validNorm = true;
787  *n = normal.unit();
788  }
789  return 0;
790  }
791  intersection = 2.*A;
792  }
793  }
794  else
795  {
796  intersection = ((rho2 - k2) / k1 - p.z()) / v.z();
797  }
798 
799  if(calcNorm)
800  {
801  *validNorm = true;
802  *n = G4ThreeVector(p.x() + intersection * v.x(), p.y()
803  + intersection * v.y(), - k1 / 2);
804  *n = n->unit();
805  }
806  return intersection;
807  }
808  else
809  {
810 #ifdef G4SPECSDEBUG
811  if(kOutside == Inside(p))
812  {
813  G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "GeomSolids1002",
814  JustWarning, "Point p is outside!");
815  }
816  else
817  G4Exception("G4Paraboloid::DistanceToOut(p,v,...)", "GeomSolids1002",
818  JustWarning, "There's an error in this functions code.");
819 #endif
820  return kInfinity;
821  }
822  return 0;
823 }
824 
826 //
827 // Calculate distance (<=actual) to closest surface of shape from inside
828 
830 {
831  G4double safe=0.0,rho,safeR,safeZ ;
832  G4double tanRMax,secRMax,pRMax ;
833 
834 #ifdef G4SPECSDEBUG
835  if( Inside(p) == kOutside )
836  {
837  G4cout << G4endl ;
838  DumpInfo();
839  std::ostringstream message;
840  G4int oldprc = message.precision(16);
841  message << "Point p is outside !?" << G4endl
842  << "Position:" << G4endl
843  << " p.x() = " << p.x()/mm << " mm" << G4endl
844  << " p.y() = " << p.y()/mm << " mm" << G4endl
845  << " p.z() = " << p.z()/mm << " mm";
846  message.precision(oldprc) ;
847  G4Exception("G4Paraboloid::DistanceToOut(p)", "GeomSolids1002",
848  JustWarning, message);
849  }
850 #endif
851 
852  rho = p.perp();
853  safeZ = dz - std::fabs(p.z()) ;
854 
855  tanRMax = (r2 - r1)*0.5/dz ;
856  secRMax = std::sqrt(1.0 + tanRMax*tanRMax) ;
857  pRMax = tanRMax*p.z() + (r1+r2)*0.5 ;
858  safeR = (pRMax - rho)/secRMax ;
859 
860  if (safeZ < safeR) { safe = safeZ; }
861  else { safe = safeR; }
862  if ( safe < 0.5 * kCarTolerance ) { safe = 0; }
863  return safe ;
864 }
865 
867 //
868 // G4EntityType
869 
871 {
872  return G4String("G4Paraboloid");
873 }
874 
876 //
877 // Make a clone of the object
878 
880 {
881  return new G4Paraboloid(*this);
882 }
883 
885 //
886 // Stream object contents to an output stream
887 
888 std::ostream& G4Paraboloid::StreamInfo( std::ostream& os ) const
889 {
890  G4int oldprc = os.precision(16);
891  os << "-----------------------------------------------------------\n"
892  << " *** Dump for solid - " << GetName() << " ***\n"
893  << " ===================================================\n"
894  << " Solid type: G4Paraboloid\n"
895  << " Parameters: \n"
896  << " z half-axis: " << dz/mm << " mm \n"
897  << " radius at -dz: " << r1/mm << " mm \n"
898  << " radius at dz: " << r2/mm << " mm \n"
899  << "-----------------------------------------------------------\n";
900  os.precision(oldprc);
901 
902  return os;
903 }
904 
906 //
907 // GetPointOnSurface
908 
910 {
911  G4double A = (fSurfaceArea == 0)? CalculateSurfaceArea(): fSurfaceArea;
912  G4double z = G4RandFlat::shoot(0.,1.);
913  G4double phi = G4RandFlat::shoot(0., twopi);
914  if(pi*(sqr(r1) + sqr(r2))/A >= z)
915  {
916  G4double rho;
917  if(pi * sqr(r1) / A > z)
918  {
919  rho = r1 * std::sqrt(G4RandFlat::shoot(0., 1.));
920  return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), -dz);
921  }
922  else
923  {
924  rho = r2 * std::sqrt(G4RandFlat::shoot(0., 1));
925  return G4ThreeVector(rho * std::cos(phi), rho * std::sin(phi), dz);
926  }
927  }
928  else
929  {
930  z = G4RandFlat::shoot(0., 1.)*2*dz - dz;
931  return G4ThreeVector(std::sqrt(z*k1 + k2)*std::cos(phi),
932  std::sqrt(z*k1 + k2)*std::sin(phi), z);
933  }
934 }
935 
937 //
938 // Methods for visualisation
939 
941 {
942  scene.AddSolid(*this);
943 }
944 
946 {
947  return new G4PolyhedronParaboloid(r1, r2, dz, 0., twopi);
948 }
949 
950 
952 {
953  if (!fpPolyhedron ||
957  {
958  G4AutoLock l(&polyhedronMutex);
959  delete fpPolyhedron;
961  fRebuildPolyhedron = false;
962  l.unlock();
963  }
964  return fpPolyhedron;
965 }
966 
967 #endif // !defined(G4GEOM_USE_UPARABOLOID) || !defined(G4GEOM_USE_SYS_USOLIDS)
void set(double x, double y, double z)
G4String GetName() const
ThreeVector shoot(const G4int Ap, const G4int Af)
static constexpr double mm
Definition: G4SIunits.hh:115
double perp2() const
static const G4double kInfinity
Definition: geomdefs.hh:42
CLHEP::Hep3Vector G4ThreeVector
double x() const
G4Polyhedron * fpPolyhedron
double dot(const Hep3Vector &) const
std::vector< ExP01TrackerHit * > a
Definition: ExP01Classes.hh:33
G4Paraboloid & operator=(const G4Paraboloid &rhs)
const char * p
Definition: xmltok.h:285
G4GeometryType GetEntityType() const
double B(double temperature)
virtual void AddSolid(const G4Box &)=0
int G4int
Definition: G4Types.hh:78
#define G4MUTEX_INITIALIZER
Definition: G4Threading.hh:175
double z() const
G4double CalculateSurfaceArea() const
void DumpInfo() const
static constexpr double twopi
Definition: G4SIunits.hh:76
static double normal(HepRandomEngine *eptr)
Definition: RandPoisson.cc:77
G4ThreeVector SurfaceNormal(const G4ThreeVector &p) const
G4GLOB_DLL std::ostream G4cout
double A(double temperature)
void DescribeYourselfTo(G4VGraphicsScene &scene) const
bool G4bool
Definition: G4Types.hh:79
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimits, const G4Transform3D &pTransform3D, G4double &pMin, G4double &pMax) const
const G4int n
G4bool CalculateExtent(const EAxis pAxis, const G4VoxelLimits &pVoxelLimit, const G4AffineTransform &pTransform, G4double &pmin, G4double &pmax) const
G4double DistanceToOut(const G4ThreeVector &p, const G4ThreeVector &v, const G4bool calcNorm=G4bool(false), G4bool *validNorm=0, G4ThreeVector *n=0) const
G4VSolid * Clone() const
G4double DistanceToIn(const G4ThreeVector &p, const G4ThreeVector &v) const
tuple v
Definition: test.py:18
EInside Inside(const G4ThreeVector &p) const
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
Definition: G4Exception.cc:41
std::ostream & StreamInfo(std::ostream &os) const
G4int G4Mutex
Definition: G4Threading.hh:173
static G4int GetNumberOfRotationSteps()
EInside
Definition: geomdefs.hh:58
EAxis
Definition: geomdefs.hh:54
Hep3Vector unit() const
double y() const
virtual ~G4Paraboloid()
double mag2() const
tuple z
Definition: test.py:28
#define G4endl
Definition: G4ios.hh:61
G4ThreeVector GetPointOnSurface() const
G4VSolid & operator=(const G4VSolid &rhs)
Definition: G4VSolid.cc:111
G4double kCarTolerance
Definition: G4VSolid.hh:307
G4int GetNumberOfRotationStepsAtTimeOfCreation() const
static constexpr double pi
Definition: G4SIunits.hh:75
T sqr(const T &x)
Definition: templates.hh:145
double G4double
Definition: G4Types.hh:76
double perp() const
G4Polyhedron * GetPolyhedron() const
G4Paraboloid(const G4String &pName, G4double pDz, G4double pR1, G4double pR2)
Definition: G4Paraboloid.cc:66
G4Polyhedron * CreatePolyhedron() const
void Extent(G4ThreeVector &pMin, G4ThreeVector &pMax) const
G4bool fRebuildPolyhedron