58 const G4int G4MuonVDNuclearModel::zdat[] = {1, 4, 13, 29, 92};
 
   59 const G4double G4MuonVDNuclearModel::adat[] = {1.01,9.01,26.98,63.55,238.03};
 
   60 const G4double G4MuonVDNuclearModel::tdat[] = {
 
   61   1.e3,2.e3,3.e3,4.e3,5.e3,6.e3,7.e3,8.e3,9.e3, 
 
   62   1.e4,2.e4,3.e4,4.e4,5.e4,6.e4,7.e4,8.e4,9.e4, 
 
   63   1.e5,2.e5,3.e5,4.e5,5.e5,6.e5,7.e5,8.e5,9.e5, 
 
   64   1.e6,2.e6,3.e6,4.e6,5.e6,6.e6,7.e6,8.e6,9.e6, 
 
   65   1.e7,2.e7,3.e7,4.e7,5.e7,6.e7,7.e7,8.e7,9.e7, 
 
   66   1.e8,2.e8,3.e8,4.e8,5.e8,6.e8,7.e8,8.e8,9.e8, 
 
   67   1.e9,2.e9,3.e9,4.e9,5.e9,6.e9,7.e9,8.e9,9.e9, 
 
   68   1.e10,2.e10,3.e10,4.e10,5.e10,6.e10,7.e10,8.e10,9.e10,1.e11}; 
 
  112   delete theFragmentation;
 
  113   delete theStringDecay;
 
  117     fElementData = 
nullptr;
 
  129   if (epmax <= CutFixed) {
 
  140   CalculateHadronicVertex(transferredPhoton, targetNucleus);
 
  164   for (
G4int iz = 0; iz < nzdat; ++iz) {
 
  165     del = std::abs(lnZ - g4calc->
logZ(zdat[iz]));
 
  173   for (
G4int it = 0; it < ntdat; ++it) {
 
  174     del = std::abs(
G4Log(KineticEnergy)-
G4Log(tdat[it]) );
 
  188   for(iy = 0; iy<NBIN; ++iy)  {
 
  191     if(pvv >= r) { 
break; }
 
  204   G4double tmin = Mass*Mass*yy*yy/(1.-yy);
 
  233       eda << 
" While count exceeded " << 
G4endl;
 
  239     rej = (1.-t/tmax)*(y1*(1.-tmin/t)+y2)/(y3*(1.-t/t2)); 
 
  244              0.5*(t-tmin)/(2.*(TotalEnergy*(TotalEnergy-ep)-Mass*Mass)-tmin);
 
  245   G4double theta = std::acos(1. - 2.*sinth2);
 
  249   G4double dirx = sinth*std::cos(phi);
 
  250   G4double diry = sinth*std::sin(phi);
 
  254   finalDirection.
rotateUz(ParticleDirection);
 
  256   G4double NewKinEnergy = KineticEnergy - ep;
 
  257   G4double finalMomentum = std::sqrt(NewKinEnergy*(NewKinEnergy+2.*Mass) );
 
  259   G4double initMomentum = std::sqrt(KineticEnergy*(TotalEnergy+Mass) );
 
  267   G4LorentzVector primaryMomentum(initMomentum*ParticleDirection, TotalEnergy);
 
  284   if (gammaE < 10*
GeV) {
 
  291     G4double piMom = std::sqrt(piKE*(piKE + 2*piMass) );
 
  306 void G4MuonVDNuclearModel::MakeSamplingTable()
 
  326   for (
G4int iz = 0; iz < nzdat; ++iz) {
 
  327     AtomicNumber = zdat[iz];
 
  328     AtomicWeight = adat[iz]*(
g/
mole);
 
  333     for (
G4int it = 0; it < ntdat; ++it) {
 
  334       KineticEnergy = tdat[it];
 
  335       TotalEnergy = KineticEnergy + mumass;
 
  342       c = 
G4Log(Maxep/CutFixed);
 
  345       dy = (ymax-ymin)/NBIN; 
 
  351       for (
G4int i = 0; i < NBIN; ++i) {
 
  357         ep = CutFixed*
G4Exp(c*x);
 
  365           pv->PutValue(nbin, it, CrossSection); 
 
  371       if (CrossSection > 0.0) {
 
  372         for (
G4int ib = 0; ib <= nbin; ++ib) { 
 
  373           pvv = pv->GetValue(ib, it); 
 
  374           pvv = pvv/CrossSection; 
 
  375           pv->PutValue(ib, it, pvv); 
 
  391   outFile << 
"G4MuonVDNuclearModel handles the inelastic scattering\n" 
  392           << 
"of mu- and mu+ from nuclei using the equivalent photon\n" 
  393           << 
"approximation in which the incoming lepton generates a\n" 
  394           << 
"virtual photon at the electromagnetic vertex, and the\n" 
  395           << 
"virtual photon is converted to a real photon.  At low\n" 
  396           << 
"energies, the photon interacts directly with the nucleus\n" 
  397           << 
"using the Bertini cascade.  At high energies the photon\n" 
  398           << 
"is converted to a pi0 which interacts using the FTFP\n" 
  399           << 
"model.  The muon-nuclear cross sections of R. Kokoulin \n" 
  400           << 
"are used to generate the virtual photon spectrum\n";
 
static G4Pow * GetInstance()
 
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &theNucleus)
 
void AddSecondaries(const std::vector< G4HadSecondary > &addSecs)
 
G4double GetValue(size_t idx, size_t idy) const 
 
std::ostringstream G4ExceptionDescription
 
G4double GetTotalEnergy() const 
 
void SetFragmentationModel(G4VStringFragmentation *aModel)
 
G4double ComputeDDMicroscopicCrossSection(G4double incidentKE, G4double Z, G4double A, G4double epsilon)
 
void SetHighEnergyGenerator(G4VHighEnergyGenerator *const value)
 
static constexpr double twopi
 
void SetStatusChange(G4HadFinalStateStatus aS)
 
G4double logZ(G4int Z) const 
 
void SetMinEnergy(G4double anEnergy)
 
void InitialiseForElement(G4int Z, G4PhysicsVector *v)
 
static const char * Default_Name()
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4double GetKineticEnergy() const 
 
Hep3Vector & rotateUz(const Hep3Vector &)
 
static G4CrossSectionDataSetRegistry * Instance()
 
const G4LorentzVector & Get4Momentum() const 
 
static G4PionZero * PionZero()
 
void G4Exception(const char *originOfException, const char *exceptionCode, G4ExceptionSeverity severity, const char *comments)
 
G4double G4Log(G4double x)
 
G4double G4Exp(G4double initial_x)
Exponential Function double precision. 
 
G4HadronicInteraction * FindModel(const G4String &name)
 
static constexpr double GeV
 
void SetEnergyChange(G4double anEnergy)
 
G4double GetPDGMass() const 
 
static G4HadronicInteractionRegistry * Instance()
 
static constexpr double GeV
 
void SetMaxEnergy(const G4double anEnergy)
 
void SetDeExcitation(G4VPreCompoundModel *ptr)
 
G4HadFinalState theParticleChange
 
virtual void ModelDescription(std::ostream &outFile) const 
 
static G4MuonMinus * MuonMinus()
 
void SetTransport(G4VIntraNuclearTransportModel *const value)
 
static constexpr double PeV
 
G4Physics2DVector * GetElement2DData(G4int Z)
 
G4double GetX(size_t index) const 
 
static constexpr double mole
 
void SetMomentumChange(const G4ThreeVector &aV)
 
virtual G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetTotalEnergy() const 
 
G4HadFinalState * ApplyYourself(const G4HadProjectile &thePrimary, G4Nucleus &theNucleus)
 
virtual ~G4MuonVDNuclearModel()