80       G4cout << 
"G4LEnp:ApplyYourself: incident particle: " 
   83              << 
", Px = " << Px/
GeV << 
" GeV/c" 
   84              << 
", Py = " << Py/
GeV << 
" GeV/c" 
   85              << 
", Pz = " << Pz/
GeV << 
" GeV/c" << 
G4endl;
 
   87              << 
", kinetic energy = " << ek/
GeV << 
" GeV" 
   88              << 
", mass = " << E0/
GeV << 
" GeV" 
   89              << 
", charge = " << Q << 
G4endl;
 
  101       E0 = std::sqrt(std::abs(E02));
 
  102       if (E02 < 0)E0 *= -1;
 
  106              << 
", mass = " << E0/
GeV << 
" GeV" 
  107              << 
", charge = " << Q << 
G4endl;
 
  113     G4int je2 = NENERGY - 1;
 
  116       G4int midBin = (je1 + je2)/2;
 
  117       if (ek < elab[midBin])
 
  121     } 
while (je2 - je1 > 1);  
 
  122     G4double delab = elab[je2] - elab[je1];
 
  128     G4int ke2 = NANGLE - 1;
 
  129     G4double dsig = sig[je2][0] - sig[je1][0];
 
  137          << ke1 << 
" " << ke2 << 
" "  
  138          << sigint1 << 
" " << sigint2 << 
G4endl;
 
  141       G4int midBin = (ke1 + ke2)/2;
 
  142       dsig = sig[je2][midBin] - sig[je1][midBin];
 
  144       b = sig[je1][midBin] - rc*elab[je1];
 
  146       if (sample < sigint) {
 
  155     G4cout << ke1 << 
" " << ke2 << 
" "  
  156            << sigint1 << 
" " << sigint2 << 
G4endl;
 
  158     } 
while (ke2 - ke1 > 1);  
 
  160     dsig = sigint2 - sigint1;
 
  162     b = ke1 - rc*sigint1;
 
  167       G4cout << 
"   energy bin " << je1 << 
" energy=" << elab[je1] << 
G4endl;
 
  180     G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
 
  187     G4double p = std::sqrt(px*px + py*py + pz*pz);
 
  192       G4cout << 
"  particle  1 momentum in CM " << px/
GeV << 
" " << py/
GeV << 
" " 
  198     G4double pxnew = p*std::sin(theta)*std::cos(phi);
 
  199     G4double pynew = p*std::sin(theta)*std::sin(phi);
 
  203     if (px*px + py*py > 0) {
 
  204       G4double cost, sint, ph, cosp, sinp;
 
  206       sint = (std::sqrt(std::fabs((1-cost)*(1+cost))) + std::sqrt(px*px+py*py)/
p)/2;
 
  208       if (std::abs(px) > 0.000001*
GeV) ph = std::atan2(py,px);
 
  211       px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
 
  212       py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
 
  213       pz = (-sint*pxnew                  + cost*pznew);
 
  223       G4cout << 
"  particle 1 momentum in CM " << px/
GeV << 
" " << py/
GeV << 
" " 
  234     G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
 
  237       G4cout << 
"  betaCM " << betaCMx << 
" " << betaCMy << 
" " 
  238              << betaCMz << 
" " << betaCM << 
G4endl;
 
  255     PA[4] = std::sqrt(M1*M1 + p*p);
 
  257     G4double BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
 
  258     G4double BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
 
  260     PB[1] = PA[1] + BPGAM  * BETA[1];
 
  261     PB[2] = PA[2] + BPGAM  * BETA[2];
 
  262     PB[3] = PA[3] + BPGAM  * BETA[3];
 
  263     PB[4] = (PA[4] - BETPA) * BETA[4];
 
  274     PA[4] = std::sqrt(M2*M2 + p*p);
 
  276     BETPA  = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
 
  277     BPGAM  = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
 
  279     PB[1] = PA[1] + BPGAM  * BETA[1];
 
  280     PB[2] = PA[2] + BPGAM  * BETA[2];
 
  281     PB[3] = PA[3] + BPGAM  * BETA[3];
 
  282     PB[4] = (PA[4] - BETPA) * BETA[4];
 
  287       G4cout << 
"  particle 1 momentum in LAB "  
  290       G4cout << 
"  particle 2 momentum in LAB "  
  293       G4cout << 
"  TOTAL momentum in LAB "  
  316   G4double ek = std::sqrt(plab*plab+nMass*nMass) - nMass;
 
  321   G4int je2 = NENERGY - 1;
 
  326       G4int midBin = (je1 + je2)/2;
 
  327       if (ek < elab[midBin])
 
  331   } 
while (je2 - je1 > 1);   
 
  333   G4double delab = elab[je2] - elab[je1];
 
  339   G4int ke2 = NANGLE - 1;
 
  340   G4double dsig = sig[je2][0] - sig[je1][0];
 
  348       G4int midBin = (ke1 + ke2)/2;
 
  349       dsig = sig[je2][midBin] - sig[je1][midBin];
 
  351       b = sig[je1][midBin] - rc*elab[je1];
 
  364   } 
while (ke2 - ke1 > 1);  
 
  366   dsig = sigint2 - sigint1;
 
  368   b = ke1 - rc*sigint1;
 
  372   G4double t = 0.5*plab*plab*(1-std::cos(theta));
 
G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
 
void SetMomentum(const G4ThreeVector &momentum)
 
G4double GetKineticEnergy() const 
 
CLHEP::Hep3Vector G4ThreeVector
 
G4double GetTotalEnergy() const 
 
G4ParticleDefinition * GetDefinition() const 
 
G4DynamicParticle * ReturnTargetParticle() const 
 
const G4String & GetParticleName() const 
 
static constexpr double twopi
 
G4double GetTotalMomentum() const 
 
void SetMinEnergy(G4double anEnergy)
 
G4GLOB_DLL std::ostream G4cout
 
double A(double temperature)
 
const G4ParticleDefinition * GetDefinition() const 
 
static constexpr double degree
 
const G4ThreeVector & GetMomentumDirection() const 
 
G4double GetKineticEnergy() const 
 
static G4Proton * Proton()
 
const G4LorentzVector & Get4Momentum() const 
 
void SetEnergyChange(G4double anEnergy)
 
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
 
G4double GetPDGMass() const 
 
static constexpr double GeV
 
void SetMaxEnergy(const G4double anEnergy)
 
G4HadFinalState theParticleChange
 
static constexpr double pi
 
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
 
static constexpr double halfpi
 
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
 
G4double GetPDGCharge() const 
 
void SetMomentumChange(const G4ThreeVector &aV)
 
G4ThreeVector GetMomentum() const 
 
G4double GetTotalMomentum() const 
 
G4double GetTotalEnergy() const