Geant4  10.03.p03
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Groups Pages
G4LEHadronProtonElastic.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 
27 // G4 Low energy model: n-p scattering
28 // F.W. Jones, L.G. Greeniaus, H.P. Wellisch
29 
30 // 11-OCT-2007 F.W. Jones: removed erroneous code for identity
31 // exchange of particles.
32 // FWJ 27-AUG-2010: extended to 5 GeV by Tony Kwan TRIUMF
33 // 06-Aug-15 A.Ribon migrating to G4Pow
34 
36 #include "G4PhysicalConstants.hh"
37 #include "G4SystemOfUnits.hh"
38 #include "Randomize.hh"
39 #include "G4ios.hh"
40 
41 #include "G4Pow.hh"
42 
43 
45  G4HadronElastic("G4LEHadronProtonElastic")
46 {
47  SetMinEnergy(0.);
48  SetMaxEnergy(20.*MeV);
49 }
50 
52 {
54 }
55 
58  G4Nucleus& targetNucleus)
59 {
61  const G4HadProjectile* aParticle = &aTrack;
62 
63  G4double P = aParticle->GetTotalMomentum();
64  G4double Px = aParticle->Get4Momentum().x();
65  G4double Py = aParticle->Get4Momentum().y();
66  G4double Pz = aParticle->Get4Momentum().z();
67  G4double ek = aParticle->GetKineticEnergy();
68  G4ThreeVector theInitial = aParticle->Get4Momentum().vect();
69 
70  if (verboseLevel > 1)
71  {
72  G4double E = aParticle->GetTotalEnergy();
73  G4double E0 = aParticle->GetDefinition()->GetPDGMass();
74  G4double Q = aParticle->GetDefinition()->GetPDGCharge();
75  G4int A = targetNucleus.GetA_asInt();
76  G4int Z = targetNucleus.GetZ_asInt();
77  G4cout << "G4LEHadronProtonElastic:ApplyYourself: incident particle: "
78  << aParticle->GetDefinition()->GetParticleName() << G4endl;
79  G4cout << "P = " << P/GeV << " GeV/c"
80  << ", Px = " << Px/GeV << " GeV/c"
81  << ", Py = " << Py/GeV << " GeV/c"
82  << ", Pz = " << Pz/GeV << " GeV/c" << G4endl;
83  G4cout << "E = " << E/GeV << " GeV"
84  << ", kinetic energy = " << ek/GeV << " GeV"
85  << ", mass = " << E0/GeV << " GeV"
86  << ", charge = " << Q << G4endl;
87  G4cout << "G4LEHadronProtonElastic:ApplyYourself: material:" << G4endl;
88  G4cout << "A = " << A
89  << ", Z = " << Z
90  << ", atomic mass "
91  << G4Proton::Proton()->GetPDGMass()/GeV << "GeV"
92  << G4endl;
93  //
94  // GHEISHA ADD operation to get total energy, mass, charge
95  //
96  E += proton_mass_c2;
97  G4double E02 = E*E - P*P;
98  E0 = std::sqrt(std::abs(E02));
99  if (E02 < 0)E0 *= -1;
100  Q += Z;
101  G4cout << "G4LEHadronProtonElastic:ApplyYourself: total:" << G4endl;
102  G4cout << "E = " << E/GeV << " GeV"
103  << ", mass = " << E0/GeV << " GeV"
104  << ", charge = " << Q << G4endl;
105  }
106 
107  G4double theta = (0.5)*pi/180.;
108 
109  // Get the target particle
110 
111  G4DynamicParticle* targetParticle = targetNucleus.ReturnTargetParticle();
112 
113  G4double E1 = aParticle->GetTotalEnergy();
114  G4double M1 = aParticle->GetDefinition()->GetPDGMass();
115  G4double E2 = targetParticle->GetTotalEnergy();
116  G4double M2 = targetParticle->GetDefinition()->GetPDGMass();
117  G4double totalEnergy = E1 + E2;
118  G4double pseudoMass = std::sqrt(totalEnergy*totalEnergy - P*P);
119 
120  // Transform into centre of mass system
121 
122  G4double px = (M2/pseudoMass)*Px;
123  G4double py = (M2/pseudoMass)*Py;
124  G4double pz = (M2/pseudoMass)*Pz;
125  G4double p = std::sqrt(px*px + py*py + pz*pz);
126 
127  if (verboseLevel > 1) {
128  G4cout << " E1, M1 (GeV) " << E1/GeV << " " << M1/GeV << G4endl;
129  G4cout << " E2, M2 (GeV) " << E2/GeV << " " << M2/GeV << G4endl;
130  G4cout << " particle 1 momentum in CM " << px/GeV << " " << py/GeV << " "
131  << pz/GeV << " " << p/GeV << G4endl;
132  }
133 
134  // First scatter w.r.t. Z axis
135  G4double phi = G4UniformRand()*twopi;
136  G4double pxnew = p*std::sin(theta)*std::cos(phi);
137  G4double pynew = p*std::sin(theta)*std::sin(phi);
138  G4double pznew = p*std::cos(theta);
139 
140  // Rotate according to the direction of the incident particle
141  if (px*px + py*py > 0)
142  {
143  G4double cost, sint, ph, cosp, sinp;
144  cost = pz/p;
145  sint = (std::sqrt(std::fabs((1-cost)*(1+cost)))
146  + std::sqrt(px*px+py*py)/p)/2;
147  py < 0 ? ph = 3*halfpi : ph = halfpi;
148  if (std::abs(px) > 0.000001*GeV) ph = std::atan2(py,px);
149  cosp = std::cos(ph);
150  sinp = std::sin(ph);
151  px = (cost*cosp*pxnew - sinp*pynew + sint*cosp*pznew);
152  py = (cost*sinp*pxnew + cosp*pynew + sint*sinp*pznew);
153  pz = (-sint*pxnew + cost*pznew);
154  }
155  else {
156  px = pxnew;
157  py = pynew;
158  pz = pznew;
159  }
160 
161  if (verboseLevel > 1) {
162  G4cout << " AFTER SCATTER..." << G4endl;
163  G4cout << " particle 1 momentum in CM " << px/GeV
164  << " " << py/GeV << " " << pz/GeV << " " << p/GeV
165  << G4endl;
166  }
167 
168  // Transform to lab system
169 
170  G4double E1pM2 = E1 + M2;
171  G4double betaCM = P/E1pM2;
172  G4double betaCMx = Px/E1pM2;
173  G4double betaCMy = Py/E1pM2;
174  G4double betaCMz = Pz/E1pM2;
175  G4double gammaCM = E1pM2/std::sqrt(E1pM2*E1pM2 - P*P);
176 
177  if (verboseLevel > 1) {
178  G4cout << " betaCM " << betaCMx << " " << betaCMy << " "
179  << betaCMz << " " << betaCM << G4endl;
180  G4cout << " gammaCM " << gammaCM << G4endl;
181  }
182 
183  // Now following GLOREN...
184 
185  G4double BETA[5], PA[5], PB[5];
186  BETA[1] = -betaCMx;
187  BETA[2] = -betaCMy;
188  BETA[3] = -betaCMz;
189  BETA[4] = gammaCM;
190 
191  //The incident particle...
192 
193  PA[1] = px;
194  PA[2] = py;
195  PA[3] = pz;
196  PA[4] = std::sqrt(M1*M1 + p*p);
197 
198  G4double BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
199  G4double BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
200 
201  PB[1] = PA[1] + BPGAM * BETA[1];
202  PB[2] = PA[2] + BPGAM * BETA[2];
203  PB[3] = PA[3] + BPGAM * BETA[3];
204  PB[4] = (PA[4] - BETPA) * BETA[4];
205 
207  newP->SetDefinition(aParticle->GetDefinition());
208  newP->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
209 
210  //The target particle...
211 
212  PA[1] = -px;
213  PA[2] = -py;
214  PA[3] = -pz;
215  PA[4] = std::sqrt(M2*M2 + p*p);
216 
217  BETPA = BETA[1]*PA[1] + BETA[2]*PA[2] + BETA[3]*PA[3];
218  BPGAM = (BETPA * BETA[4]/(BETA[4] + 1.) - PA[4]) * BETA[4];
219 
220  PB[1] = PA[1] + BPGAM * BETA[1];
221  PB[2] = PA[2] + BPGAM * BETA[2];
222  PB[3] = PA[3] + BPGAM * BETA[3];
223  PB[4] = (PA[4] - BETPA) * BETA[4];
224 
225  targetParticle->SetMomentum(G4ThreeVector(PB[1], PB[2], PB[3]));
226 
227  if (verboseLevel > 1) {
228  G4cout << " particle 1 momentum in LAB "
229  << newP->GetMomentum()*(1./GeV)
230  << " " << newP->GetTotalMomentum()/GeV << G4endl;
231  G4cout << " particle 2 momentum in LAB "
232  << targetParticle->GetMomentum()*(1./GeV)
233  << " " << targetParticle->GetTotalMomentum()/GeV << G4endl;
234  G4cout << " TOTAL momentum in LAB "
235  << (newP->GetMomentum()+targetParticle->GetMomentum())*(1./GeV)
236  << " "
237  << (newP->GetMomentum()+targetParticle->GetMomentum()).mag()/GeV
238  << G4endl;
239  }
240 
243  delete newP;
244  theParticleChange.AddSecondary(targetParticle);
245 
246  return &theParticleChange;
247 }
248 
250 //
251 // sample momentum transfer using Lab. momentum
252 
253 G4double
255  G4double plab, G4int , G4int )
256 {
257  G4double hMass = p->GetPDGMass();
258  G4double pCMS = 0.5*plab;
259  // pCMS *= 50;
260  G4double hEcms = std::sqrt(pCMS*pCMS+hMass*hMass);
261  // G4double gamma = hEcms/hMass;
262  // gamma *= 15;
263  G4double beta = pCMS/hEcms; // std::sqrt(1-1./gamma/gamma); //
264  // beta /= 0.8; // 0.95; // 1.0; // 1.1 // 0.5*pi; // pi; twopi;
265  G4double cosDipole = RandCosThetaDipPen();
266  G4double cosTheta = cosDipole + beta;
267  cosTheta /= 1. + cosDipole*beta;
268  G4double t = 2.*pCMS*pCMS*(1.-cosTheta);
269  return t;
270 
271 }
272 
274 //
275 // 1 + cos^2(theta) random distribution in the projectile rest frame, Penelope algorithm
276 
278 {
279  G4double x, cosTheta, signX, modX, power = 1./3.;
280 
281  if( G4UniformRand() > 0.25)
282  {
283  cosTheta = 2.*G4UniformRand()-1.;
284  }
285  else
286  {
287  x = 2.*G4UniformRand()-1.;
288 
289  if ( x < 0. )
290  {
291  modX = -x;
292  signX = -1.;
293  }
294  else
295  {
296  modX = x;
297  signX = 1.;
298  }
299  cosTheta = signX*G4Pow::GetInstance()->powA(modX,power);
300  }
301  return cosTheta;
302 }
303 
304  // end of file
static G4Pow * GetInstance()
Definition: G4Pow.cc:55
G4int GetA_asInt() const
Definition: G4Nucleus.hh:109
G4double powA(G4double A, G4double y) const
Definition: G4Pow.hh:259
G4double SampleInvariantT(const G4ParticleDefinition *p, G4double plab, G4int Z, G4int A)
void SetMomentum(const G4ThreeVector &momentum)
G4double GetKineticEnergy() const
CLHEP::Hep3Vector G4ThreeVector
G4double GetTotalEnergy() const
const char * p
Definition: xmltok.h:285
static double Q[]
G4ParticleDefinition * GetDefinition() const
tuple x
Definition: test.py:50
int G4int
Definition: G4Types.hh:78
G4DynamicParticle * ReturnTargetParticle() const
Definition: G4Nucleus.cc:241
const G4String & GetParticleName() const
static double P[]
static constexpr double twopi
Definition: G4SIunits.hh:76
G4double GetTotalMomentum() const
void SetMinEnergy(G4double anEnergy)
Hep3Vector vect() const
#define G4UniformRand()
Definition: Randomize.hh:97
G4GLOB_DLL std::ostream G4cout
double A(double temperature)
const G4ParticleDefinition * GetDefinition() const
const G4ThreeVector & GetMomentumDirection() const
G4double GetKineticEnergy() const
G4double ek
static G4Proton * Proton()
Definition: G4Proton.cc:93
float proton_mass_c2
Definition: hepunit.py:275
const G4LorentzVector & Get4Momentum() const
void SetEnergyChange(G4double anEnergy)
G4double GetPDGMass() const
G4int GetZ_asInt() const
Definition: G4Nucleus.hh:115
static constexpr double GeV
Definition: G4SIunits.hh:217
void SetMaxEnergy(const G4double anEnergy)
#define G4endl
Definition: G4ios.hh:61
static constexpr double MeV
Definition: G4SIunits.hh:214
static constexpr double pi
Definition: G4SIunits.hh:75
void AddSecondary(G4DynamicParticle *aP, G4int mod=-1)
static constexpr double halfpi
Definition: G4SIunits.hh:77
double G4double
Definition: G4Types.hh:76
void SetDefinition(const G4ParticleDefinition *aParticleDefinition)
G4double GetPDGCharge() const
void SetMomentumChange(const G4ThreeVector &aV)
G4ThreeVector GetMomentum() const
G4HadFinalState * ApplyYourself(const G4HadProjectile &aTrack, G4Nucleus &targetNucleus)
G4double GetTotalMomentum() const
G4double GetTotalEnergy() const